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We address the vexing issue of deletions in balanced trees. Rebalancing after a deletion is generally more complicated than
rebalancing after an insertion. Textbooks neglect deletion rebalancing, and many B-tree-based database systems do not do
it. We describe a relaxation of AVL trees in which rebalancing is done after insertions but not after deletions, yet worst-case
access time remains logarithmic in the number of insertions. For any application of balanced trees in which the number of
updates is polynomial in the tree size, our structure offers performance competitive with that of classical balanced trees. With
the addition of periodic rebuilding, the performance of our structure is theoretically superior to that of many if not all classic
balanced tree structures. Our structure needs lg lgm + 1 bits of balance information per node, where m is the number of
insertions and lg is the base-two logarithm, or lg lgn + O(1) with periodic rebuilding, where n is the number of nodes. An
insertion takes up to two rotations and O(1) amortized time, not counting the time to find the insertion position. This is the
same as in standard AVL trees. Using an analysis that relies on an exponential potential function, we show that rebalancing
steps occur with a frequency that is exponentially small in the height of the affected node. Our techniques apply to other
types of balanced trees, notably B-trees, as we show in a companion paper, and in particular red-black trees, which can be
viewed as a special case of B-trees.
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1. INTRODUCTION
Here is the true story that motivated this work, fictionalized to protect the parties involved. A
database provider was contracted to build a real-time database to store customer information, to
be queried and updated on a regular basis. The provider decided to use a red-black tree [Guibas and
Sedgewick 1978] to store the database, but implemented rebalancing only after insertions, not after
deletions. As a safety check, a limit of 80 was placed on the allowed height of the tree. This limit
would allow storage of 240 records in a valid red-black tree, far exceeding the anticipated number.
Exceeding the height bound was interpreted as an error and triggered a recovery process intended
to restore the database. Some time after the database was placed in service, the height bound was
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exceeded, triggering the recovery process. Unfortunately, the recovery process was ill-designed,
causing the height bound to be exceeded again, and this cycle repeated. The database provider had
replicated the database for scalability and fault tolerance: queries were load-balanced across the
replicas, while updates were applied to all of them. However, the failure that occurred was caused
by a valid update, and since all replicas ran the same code, the same update caused every replica to
fail, resulting in a total service outage and a lawsuit.

Aside from the unfortunate practical outcome, this incident raised an interesting theoretical ques-
tion: can one maintain balance in a search tree by rebalancing only after insertions, not after dele-
tions? Even if the recovery process mentioned above had been implemented correctly, the rebal-
ancing algorithm would still have allowed the tree height to grow enormously, severely degrading
performance. Before considering whether this can be avoided, we review some of the literature
concerning deletion in balanced trees. Such a review provides insight into how the event described
above came about.

The original paper on balanced search trees [Adel’son-Vel’skii and Landis 1962], which intro-
duced AVL trees to the world, is only four pages long. It describes how to rebalance an n-node AVL
tree after an insertion by doing one or two rotations and updating height information in O(log n)
nodes. An algorithm for rebalancing after a deletion appeared several years later, in a technical re-
port by a different author [Foster 1965]. Deletion rebalancing requires O(log n) rotations rather than
O(1). In all existing forms of balanced trees, of which there are many (e.g., [Andersson 1993; Bayer
1971; 1972; Guibas and Sedgewick 1978; Haeupler et al. 2009; 2015; Nievergelt and Reingold
1973; Olivié 1982; Sedgewick 2008]), deletion is at least a little more complicated than insertion,
although for some kinds of balanced search trees, notably red-black trees [Guibas and Sedgewick
1978] and the recently introduced weak AVL (wavl) trees [Haeupler et al. 2009; 2015], rebalancing
after a deletion can be done in O(1) rotations. Many textbooks describe algorithms for insertion but
not deletion. If operations on the search tree occur concurrently, as in many database systems that
use some form of B-tree as the underlying data structure, the synchronization necessary to do re-
balancing on deletion reduces the available concurrency [Gray and Reuter 1993]. Several database
systems, including Berkeley DB [Olson et al. 1999; 2000], use a B+ tree with nodes that are al-
lowed to be underfilled, even empty. Nodes that become overfull as the result of an insertion are
immediately split, but nodes that become underfull as the result of a deletion are allowed to remain
underfull. Restructuring occurs only when a leaf becomes entirely empty, at which time the empty
leaf and any connected empty internal nodes are deleted. Thus it was perhaps natural to try to avoid
rebalancing on deletion in red-black trees. But disaster ensued.

A more precise version of our question is this: can one maintain a binary search tree so that
search time is logarithmic but rebalancing is done only after insertions, not after deletions, and
space remains linear in the number of undeleted nodes? To answer this question, we need to ask,
“logarithmic in what parameter?” If there is no rebalancing after deletions (and none after accesses,
which excludes self-adjusting structures such as splay trees [Sleator and Tarjan 1985]), then the
tree can evolve to have arbitrary structure, which means that the search time can become Θ(n). But
such an evolution may take many deletions, and it is still possible that the tree height, and hence the
search time, could remain logarithmic in m, the number of insertions.

We show how to do this. We introduce a new kind of binary tree, the ravl tree (relaxed AVL
tree), which is rebalanced only after insertions, not after deletions, and whose height is at most
logφm, where φ is the golden ratio. This bound implies that if the number of insertions and deletions
is polynomial in the tree size n, the time per operation is O(log n). Our bound of logφm is the
same as that for an ordinary AVL tree without deletions. Indeed, without deletions a ravl tree is
exactly an AVL tree. Furthermore, rebalancing affects nodes exponentially infrequently in their
heights, which means that the amortized rebalancing time per insertion is O(1) and most of the
rebalancing occurs deep in the tree. Mehlhorn and Tsakalidis [Mehlhorn and Tsakalidis 1986],
proved the latter property for standard AVL trees if only insertions are allowed, not deletions. They
also proved this property for “weak” B-trees with intermixed insertions and deletions, which include
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red-black trees as a special case. A result of Larsen and Fagerberg [Larsen and Fagerberg 1996] on
relaxed balanced B-trees and a related result of Boyar, Fagerberg, and Larsen [Boyar et al. 1997] on
chromatic trees, a type of relaxed balanced red-black tree, improve the constants of the Huddleston-
Mehlhorn result for standard red-black trees. All these results use a multilevel credit argument. Our
analyses use exponential potential functions, a tool that unifies and simplifies the multilevel credit
method, and which we also used [Haeupler et al. 2009; 2015] to analyze wavl trees. Our results hold
for bottom-up rebalancing; we extend them to top-down rebalancing with finite look-ahead as well.
We obtain similar results for a relaxed version of red-black trees. Perhaps surprisingly, we obtain
better constant factors for many of our bounds than the corresponding bounds for wavl trees. Thus
not only does rebalancing after deletions complicate the implementation, it makes the time bounds
worse.

Two of us [Sen and Tarjan 2009; 2014] have also used exponential potential functions to prove
that B+ trees with underfilled nodes have similar properties, thus providing theoretical support for
the use of such trees in actual database systems. Eliminating deletion rebalancing in binary trees is
noticeably more challenging, as we discuss in Section 3.

The price we pay for our results on binary trees is that each node in the tree must store lg lgm+1
bits∗ of balance information (or lg lg n+ O(1) with periodic rebuilding; see Section 8), rather than
the one bit per node needed in AVL [Adel’son-Vel’skii and Landis 1962], wavl [Haeupler et al. 2009;
2015], and red-black trees [Guibas and Sedgewick 1978]. Indeed, we provide evidence to suggest
that O(1) bits suffice only if one does cascading swaps of items between nodes during deletions.
(We leave rigorous resolution of this question as an open problem.) We conclude that the approach
used by the unfortunate database provider to keep red-black trees balanced without rebalancing on
deletion was theoretically doomed. That this would manifest itself in practice surprised us, since on
random update sequences even unbalanced trees perform well, if the standard deletion algorithm is
symmetrized [Culberson and Munro 1989].

The body of our paper consists of nine sections. Section 2 contains our tree terminology. Sec-
tion 3 discusses candidate approaches for avoiding deletion rebalancing and motivates the approach
we take. Section 4 defines ravl trees and describes bottom-up rebalancing after an insertion; the
rebalancing algorithm is that of AVL trees, extended to ravl trees. Section 5 analyzes the amortized
efficiency of bottom-up rebalancing. Section 6 describes and analyzes top-down rebalancing with
fixed look-ahead, an alternative rebalancing method that improves concurrency. Section 7 applies
the ideas in Sections 4-6 to red-black trees. Section 8 describes a way to rebuild the trees efficiently
if they become very unbalanced. Section 9 examines other ways of handling insertions and deletions,
and gives examples showing that natural methods that use one balance bit per node fail. Section 10
explores the pros and cons of rebalancing after deletions. Section 11 contains final remarks.

2. TREE TERMINOLOGY
Our tree terminology is the same as in [Haeupler et al. 2009; 2015]. We repeat it here (almost
verbatim) for completeness. A binary tree is an ordered tree in which each node x has a left child
left(x) and a right child right(x), either or both of which may be missing. Missing nodes are
external; non-missing nodes are internal. Each node is the parent of its children. We denote the
parent of a node x by p(x). The root is the unique node with no parent. A leaf is a node with
both children missing. The ancestor, respectively descendant relationship is the reflexive, transitive
closure of the parent, respectively child relationship. If x is a node, its left, respectively right subtree
is the binary tree containing all descendants of left(x), respectively right(x). The left, respectively
right spine of a binary tree is the path from the root down through left, respectively right children
to a missing node. The height h(x) of a node x is defined recursively by h(x) = 0 if x is a leaf,
h(x) = max{h(left(x)), h(right(x))} + 1 otherwise. The height h of a tree is the height of its
root.

∗We denote by lg the base-two logarithm.
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We are most interested in binary trees as search trees. A binary search tree stores a set of items,
each of which has a key selected from a totally ordered universe. We shall assume that each item
has a distinct key; if not, we break ties by item identifier. In an internal binary search tree, each
node contains an item, and the items are arranged in symmetric order: the key of the item in a node
x is greater, respectively less than those of all items in its left, respectively right subtree. Given
such a tree and a key, we can search for the item having that key by comparing the key with that
of the item in the root. If they are equal, we have found the desired item. If the search key is less,
respectively greater than that of the root, we search recursively in the left, respectively right subtree
of the root. Each key comparison is a step of the search; the current node is the one whose item’s
key is compared with the search key. Eventually the search either locates the desired item or reaches
a missing node, the left or right child of the last node reached by the search in the tree.

To insert a new item into such a tree, we first do a search on its key. When the search reaches a
missing node, we replace this node with a node containing the new item. Deletion is a little harder.
First we find the node x containing the item to be deleted by doing a search on its key. If neither
child of x is missing, we find the node y after x in symmetric order, by starting at the right child of
x and walking down through left children until reaching a node with a missing left child. This node
is y. A symmetric alternative is to find the node y before x in symmetric order, by starting at the left
child of x and walking down through right children until reaching a node with a missing child; this
node is y. Having found a node y next to x in symmetric order, we swap the items in x and y. Now
the node containing the item to be deleted is either a leaf or has one missing child. In the former
case, we replace it by a missing node; in the latter case, we replace it by its non-missing child. If
each node has pointers to its children, an access, insertion, or deletion takes O(h + 1) time in the
worst case, where h is the tree height.

An alternative kind of search tree is an external binary search tree: the external nodes contain
the items, the internal nodes contain keys but no items, and all the keys are in symmetric order.
Henceforth, unless we explicitly state otherwise, by a binary tree we mean an internal binary search
tree. Our results extend to external binary search trees and to other binary tree data structures. We
denote by n, m, and d, respectively the current number of nodes, the number of insertions, and the
number of deletions in a sequence of intermixed searches, insertions, and deletions that starts with
an empty tree. These parameters are related: n = m− d.

For purposes of deriving time bounds, we assume a pointer-machine [Tarjan 1979] implementa-
tion, with each node occupying one machine cell and having pointers to its left and right children,
and possibly to its parent. In addition, each node has an integer rank (see Section 4) and, if the tree
is a search tree, a key. Creating a new node, following a pointer, comparing two keys or ranks, or
adding a constant to a rank takes constant time.

3. DESIGN CANDIDATES
Our goal is to design binary search trees that avoid rebalancing on deletion yet maintain an O(logm)
height bound at all times and use space proportional to the number of undeleted items. In this
section, we discuss some natural candidate solutions and their drawbacks, motivating our approach
in the subsequent sections.

A simple way to avoid deletion rebalancing is to do deletions lazily, via the “tombstone” method:
in an existing form of balanced tree, replace the deletion algorithm by the following: to delete an
item, simply remove it from its node but leave its key, so that searching remains possible. If a new
item with the same key is later inserted, store it in the node containing its key. The tombstone
method eliminates not only rebalancing during deletions but also swapping of items between nodes.
In analyzing the method, one can ignore deletions and consider trees built only by insertions. This
immediately yields the same height bound as the underlying tree, except that n is replaced by m.
For example, applying the tombstone method to AVL trees with bottom-up rebalancing on insertion
yields a height bound of logφm. A similar application to red-black trees yields a height bound of
2 lgm. In fact, all the results we present in this paper can be adapted to the tombstone method.
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A significant drawback of the tombstone method is that it requires key comparisons to remain
valid after items are deleted. There are important applications in computational geometry where
this is not the case. A notable example is in the use of a persistent search tree to solve the planar
point location problem [Sarnak and Tarjan 1986]. In this application, each line segment in the pla-
nar subdivision becomes an item in a persistent search tree, inserted at a time corresponding to the
smaller of the x-coordinates of the two endpoints and deleted at a time corresponding to the larger
of the x-coordinates of the two endpoints. During a query, a given query point is compared against
various line segments stored in the tree, to determine whether it is above or below each line seg-
ment. If the point has x-coordinate larger than any point on the line segment, such a comparison is
meaningless. In this application the tombstone method fails completely.

Another drawback of the tombstone method is that if the number of deletions approaches the
number of insertions, the space required by the tree can become superlinear in the number of items.
One can keep the space usage linear by removing empty nodes when possible: during a deletion,
delete the item but not its key if it is in a node with two non-null children, or otherwise delete
the node containing the item and replace this node by its non-empty child if it has one [Bronson
et al. 2010]. This method ensures that every empty node has two non-empty children, so the number
of nodes is at most 2n − 1. This method fails badly when applied to red-black trees however: in
Section 9, we construct sequences of O(n) intermixed insertions and deletions that produce trees
of height Ω(n). That is, only a linear number of updates, not a superpolynomial number, suffice
to make the tree very unbalanced. Similar counterexamples exist for other kinds of balanced trees,
such as AVL and wavl trees.

An alternative way to keep the space linear when using the tombstone method is to periodically
rebuild the tree. Such rebuilding complicates the implementation, and it must be done each time the
ratio of deletions to insertions exceeds an appropriately chosen constant. In contrast, our solution
needs only one node per item at all times, and rebuilding (see Section 8) is only needed if the
number of updates becomes super-polynomial in the number of items, and then only if one wants to
guarantee a worst-case access time of O(log n) instead of O(logm).

An even more relaxed way to do rebalancing is to avoid rebalancing during both insertions and
deletions but maintain a separate thread (or threads, in a multi-threaded implementation) that does
rebalancing. This idea has been studied by many authors (e.g., [Hanke et al. 1997; Kessels 1983;
Nurmi et al. 1987; Nurmi and Soisalon-Soininen 1996; Larsen and Fagerberg 1996; Boyar et al.
1997]), who call their data structures “relaxed balanced trees” of various kinds. These papers derive
bounds on the total number of rebalancing steps that must be done to restore the balance of the
tree, as a function of the number of updates (insertions and deletions). In the best of these results,
e.g. [Larsen and Fagerberg 1996; Boyar et al. 1997] the number of rebalancing steps is linear in the
number of insertions, and the number of steps at a given tree height is exponentially infrequent in
the height. The problem with this approach is that a sequence of n insertions of items in increasing
order will produce a linear tree, in which searches will be extremely expensive until the balancing
process has a chance to do its work. Furthermore, it is still necessary to do deletion rebalancing; it
is just delayed. Our goal, on the other hand, is to completely avoid deletion rebalancing, both eager
and lazy, while still maintaining, at all times, a logarithmic bound on search time.

These approaches fail to maintain O(logm) tree height because they rely on standard inser-
tion rebalancing algorithms and, more importantly, on standard ways to store balance information.
Specifically, they store only O(1) balance bits per node (encoding, for example, a node color, node
type, or height difference), which means they are unable to retain enough information about the
structure of the tree after sufficiently many deletions have occurred. The original tombstone method
evades this problem at the cost of space, by retaining every node ever inserted. Is there a solution
that uses only n nodes? This question is important, because practitioners that wish to avoid deletion
rebalancing typically do so by taking an existing balanced tree implementation and removing the
deletion rebalancing code. This is precisely what the database provider mentioned in the introduc-
tion did, to disastrous effect. In the next two sections, we develop a method that stores sufficient
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balance information in each node to guarantee O(logm) tree height while doing deletions exactly
as described in Section 2, with no rebalancing.

To understand our method, it is useful to compare B-trees with binary trees. In a B-tree, every leaf
has the same depth. One can avoid rebalancing on deletion by allowing nodes to become underfilled,
but a deletion that empties a leaf can trigger a cascade of deletions of empty nodes along a path up
toward the root. In a binary tree, no nodes are empty, but nodes can have different depths. We store
with each node a non-negative integer rank that is an estimate of the height of the node. Ranks
provide a “scaffold” that guarantees a logarithmic height bound, replacing the leaf depth invariant
in B-trees.

4. RELAXED AVL TREES
We define balance in a binary tree by giving each node a rank and imposing a rank rule that locally
constrains ranks and implies a bound on height as a function of rank. For a general discussion of this
approach, which captures all forms of height balance of which we are aware, see [Haeupler et al.
2015]. Here we review the idea, give a few examples, and use it to define a new class of trees.

A ranked binary tree is a binary tree in which each node x has a non-negative integer rank r(x).
We adopt the convention that missing nodes have rank −1. The rank difference of a node x with
parent p(x) is r(p(x))−r(x). An i-child is a node of rank difference i; an i, j-node is a node whose
children have rank differences i and j. The latter definition does not distinguish between left and
right children.

To see the impact of these definitions, consider a ranked binary tree in which every node is a
1,1-node. Such a tree must be a perfect binary tree with the rank of each node equal to its height. To
maintain balance, we want to keep the nodes as close to being 1,1-nodes as possible.

We can define AVL trees in this framework as ranked binary trees in which each node is a 1,1-
node or a 1,2-node. In such a tree, ranks equal heights. (This is true in any ranked binary tree in
which all rank differences are positive and each node has a 1-child.) We can define red-black trees
as ranked binary trees in which all rank differences are 0 or 1 and a 0-child does not itself have a
0-child. To interpret such a tree as a red-black tree, color each 1-child black and each 0-child red.
The rank of a node is its “black height”, the number of black nodes on any path from the node to a
missing node, not counting the node itself. The rank of a node is at most its height and at least the
floor of half its height.

To allow deletion without rebalancing, we need a more relaxed rank rule. A relaxed AVL tree,
or ravl† tree, is a ranked binary tree that obeys the following rank rule: every rank difference is
positive.

LEMMA 4.1. In a ravl tree, each node has height no greater than its rank.

PROOF. Every node has rank greater than the maximum of the ranks of its children. Since miss-
ing nodes have rank −1, leaves have non-negative rank. The lemma follows by induction on the
node rank.

Any binary tree can be made into a ravl tree by a suitable choice of node ranks; indeed, there
are always many ways to do it. The efficiency of ravl trees comes not from their static structure
but from the implementation of insertions and deletions and how this affects the tree structure over
time. Specifically, we do insertions and deletions in a way that guarantees that the root rank, and
hence the tree height, is logarithmic in the number of updates.

We consider ravl trees built from the empty tree by a sequence of intermixed insertions of leaves
and deletions of arbitrary nodes. A new leaf x replaces a missing node and has a rank of zero. (See
Figure 1.) If x has a parent p(x) of rank 0 before the insertion, x is a 0-child and violates the rank
rule (see Figure 1c). We restore the rank rule by promoting and demoting nodes and doing rotations.
A promotion increases the rank of a node by one, a demotion decreases it by one. A rotation at a left

†One meaning of “ravel” is “to undo the intricacies of”. Ravl trees undo the intricacies of deletions.
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Fig. 1. Insertion of a new leaf x in a ravl tree. (a) Node x is the root: no rebalancing needed. (b) Parent y of x has positive
rank. No rebalancing needed. (c) Parent y of x has rank 0. Rebalancing needed: sibling of x is a missing node of rank -1 and
rank difference 1.
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Fig. 2. Rotation. Triangles denote subtrees.

child x with parent y makes y the right child of x while preserving symmetric order; a rotation at a
right child is symmetric. (See Figure 2.) The insertion algorithm starts at the inserted leaf and walks
up the tree through ancestors, promoting each one, until the current node is not a 0-child, or it is a
0-child and its sibling is not a 1-child. In the former case the rank invariant is restored; in the latter
case it can be restored by doing one or two rotations and at most one promotion and two demotions.
In details, the insertion algorithm is as follows (see Figure 3):

Insertion rebalancing:

While p(x) 6= null and p(x) is a 0,1-node, repeat the following step:

Promote: Promote p(x); x← p(x).

Now either the rank rule holds or x is a 0-child whose sibling is an i-child with i > 1. In the latter
case, proceed as follows. Assume x is the left child of y = p(x); the other possibility is symmetric.
Let z be the right child of x; y may be missing. Do the appropriate one of the following two steps:

Rotate: If node z is missing or a 2-child, rotate at x and demote y.
Double Rotate: Otherwise (node z is a 1-child), rotate at z twice, making x its left child and y
its right child; promote z and demote x and y.

During rebalancing, there is exactly one violation of the rank rule: current node x is a 0-child. A
rotate or double rotate step restores the rank rule and terminates rebalancing, as does a promote step
that promotes the root or results in the new x not being a 0-child. In the first rebalancing step, x is a
leaf of rank zero and hence a 1,1-node; in each rebalancing step after the first, x is a 1,2-node. The
rank of a rebalancing step is the rank of p(x) just before the step. Each step has rank one higher
than that of the previous step. The rank of an insertion is the rank of the last rebalancing step, or
zero if there is no rebalancing.

To delete an item in a leaf in a ravl tree, we replace the leaf by a missing node. To delete an item
in a node with one child, we remove the node and replace it by its child; this child becomes the
left or right child of the old parent of the deleted node if the deleted node was a left or right child,
respectively. To delete an item in a node with two children, we swap the item with its symmetric-
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Fig. 3. Bottom-up rebalancing after an insertion in a ravl tree. Values to the left of nodes are ranks, those to the right of
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and double rotate cases, j ≤ k − 2, so the right child of y has rank difference at least 2 before the step, at least 1 after the
step.

order predecessor or successor, thereby moving it to a leaf or a node with one child, and proceed as
above. In a deletion, no rotations occur and no ranks change.

As long as there are no deletions, all nodes remain 1,1- or 1,2-nodes (except in the middle of
rebalancing), so the tree remains an AVL tree. Indeed, the rebalancing algorithm is just the standard
bottom-up rebalancing algorithm for AVL trees. All the results we shall derive for bottom-up rebal-
ancing hold as a special case for AVL trees built by insertions only. Deletions can create nodes of
arbitrary positive rank difference, however, and thus can create trees that are not AVL trees. Indeed,
deletions can produce trees of arbitrary structure.

We represent a ravl tree by storing with each node its rank and pointers to its left and right
children. An alternative is to store ranks in difference form: the root stores its rank, and every child
stores its rank difference. This only works if access to the tree is always via the root, and it requires
computing node ranks during an insertion by summing rank differences along the path from the root
to the new leaf. In an AVL tree, rank differences are one or two, so one bit per node suffices to store
rank differences. But in a ravl tree, rank differences can become arbitrarily large, and storing ranks
in difference form offers no advantages and requires changing at least one extra balance field during
each insertion step. Thus we prefer to store ranks explicitly.

The rebalancing process after an insertion needs access to the affected nodes on the search path.
There are several ways to provide such access, as we have discussed previously [Haeupler et al.
2015]. One way is to add parent pointers, which requires three pointers per node instead of two and
increases the cost of rotations. By using an alternative representation that saves space but costs time,
this can be reduced to two pointers per node [Fredman et al. 1986].
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Instead of adding or modifying pointers to support parental access, we can store the search path
during the search from the root for the insertion position, either in a separate stack or by reversing
child pointers along the path.

A third method is to maintain a safe node during the search. This node is the topmost node that
will be affected by rebalancing. Metzger [Metzger 1975] and Samadi [Samadi 1976] used safe nodes
to limit the amount of locking in a concurrent B-tree. We apply this idea to binary trees and use it
for a slightly different purpose: to avoid the need for parent pointers or a stack to do rebalancing.
During an insertion, the safe node is either the root or the parent of the nearest ancestor of the current
node that is not a 1-child and not a 1,1-node. A simpler alternative is to define the safe node to be
the parent of the nearest ancestor of the current node that is not a 1,1-node, or the root if there is no
such node. The latter definition gives the same node as the former, or its parent. We initialize the
safe node to be the root and change it to the parent of the current node each time the current node
is not a 1,1-node (or not a 1-child, if we are using the former definition). Once the search reaches
the bottom of the tree, we do rebalancing steps (modified appropriately) top-down from the safe
node to the new leaf. One advantage of this method is that it extends naturally to support top-down
rebalancing with fixed look-ahead, as we discuss in Section 6.

5. ANALYSIS OF BOTTOM-UP REBALANCING
A search in a ravl tree takes O(h + 1) time, where h is the tree height. A deletion takes O(h + 1)
time to find the item to be deleted and the node containing its replacement, if any, plus O(1) time to
do the deletion. An insertion takes O(h + 1) time to find the location of the new leaf, plus at most
h + 1 rebalancing steps, each of which takes O(1) time. At most one of these steps is a single or
double rotation; the rest are promotions. All these bounds are worst-case.

Our most important result is that a ravl tree built from an empty tree has height logarithmic in
the number of insertions, even if deletions are intermixed arbitrarily. Recall the definition of the
Fibonacci numbers Fk and of the golden ratio φ: F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for k > 1;
φ = (1 +

√
5)/2. The inequality Fk+2 ≥ φk is well-known [Knuth 1973].

THEOREM 5.1. If a ravl tree of height h is built from an empty tree by a sequence of m inser-
tions with bottom-up rebalancing intermixed with arbitrary deletions, m ≥ Fh+3 − 1 ≥ φh. Thus
h ≤ logφm.

PROOF. We use an exponential potential function of the kind first used by us to analyze wavl
trees [Haeupler et al. 2009; 2015]. So that potentials are defined even in the middle of an insertion,
we give potentials to nodes that violate the rank invariant (nodes with a 0-child) as well as to those
that do not.

Define the potential of a node of rank k to be Fk+2 if it is a 0,1-node, Fk+1 if it is a 0, j-node
with j > 1, Fk if it is a 1,1-node, and 0 otherwise. We define the potential of a tree to be the sum of
its node potentials. We call this the Fibonacci potential.

A deletion cannot increase the potential. We show by a case analysis that inserting a new leaf x
increases the tree potential by at most 1 (see Figure 1), since x is a 1,1-node of rank 0 and hence has
potential F0 = 0. If x has a parent y, the potential of y is non-zero after x is inserted only if y was
a 1,2-node and is now a 1,1-node (y has rank 1 and a child other than x) or y was a 1,1-node and is
now a 0,1-node (y has rank 0). In each case the potential of y increases from 0 to F1 = 1. No other
node potential can change.

Similarly, we show by a case analysis that no rebalancing step increases the tree potential, and that
a promotion step of rank k that promotes the root decreases the tree potential by Fk+2. Consider
a promotion step of rank k. (See Figure 3.) Such a step changes the node potentials only of the
promoted node y and possibly of its parent if it has one. The promotion converts y from a 0,1-node
to a 1,2-node, decreasing its potential from Fk+2 to 0. Thus if y is the root, the step decreases the
tree potential by Fk+2. Suppose y has a parent p(y). The promotion of y increases the potential of
p(y) only if it converts p(y) from a 1,2-node to a 1,1-node or from a 1,1-node to a 0,1-node. In
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the former case the potential of p(y) increases from 0 to Fk+2, since p(y) has rank k + 2; in the
latter from Fk+1 to Fk+3, or an increase of Fk+2, since p(y) has rank k + 1. In both cases the tree
potential is unchanged.

In a rotate step (see Figure 3), nodes x and y have potentials 0 and Fk+1 = Fk−1 + Fk, re-
spectively, before the step, and Fk and at most Fk−1, respectively, after. No other node potentials
change. In a double rotate step, if node z is a 1,1-node, then nodes x, y, and z have potentials 0,
Fk+1 = Fk1 +Fk, and Fk−1, respectively, before the step, and Fk−1, Fk−1, and Fk after. If node z
is not a 1,1-node, then nodes x, y, and z have potentials 0, Fk+1 = Fk−1 + Fk, and 0, respectively,
before the step. After the step, z has potential Fk, and at most one of x and y can be a 1,1-node, so
one has potential at most Fk−1 and the other has potential 0. No other node potentials change. In
each case the step does not increase the tree potential.

The potential of the initial (empty) tree is 0. The argument above shows that the potential can
only increase, by at most 1, each time a new leaf is inserted into a non-empty tree. Thus the total
increase in potential caused by a sequence of m insertions into an empty tree, intermixed with
arbitrary deletions, is at most m − 1. If the rank of the root is r, there was a terminal promote step
of rank i that promoted the root, for each i from 0 to r− 1, inclusive. The total decrease in potential
caused by these promotions is

∑r+1
i=2 Fi = Fr+3 − 2. Since the potential is always non-negative,

m− 1 ≥ Fr+3 − 2. By Lemma 4.1, h ≤ r. Thus m ≥ Fh+3 − 1 ≥ Fh+2 ≥ φh.

Remark: One can also prove Theorem 5.1 using an alternative definition of potential. Each node
in the tree has a positive integer count. The potential of a node is the sum of the counts of all its
descendants, including itself. We assign counts as follows: each new leaf gets a count of 1. When
a leaf is deleted, its count is added to that of its parent, if it has a parent; when a unary node is
deleted, its count is added to that of its child. It follows by a case analysis like that in the proof of
Theorem 5.1 that the potential of a node x is at least Fk+3−1, where k = max{r(x), r(p(x))−2},
with r(null) = 0. This implies m ≥ Fh+3 − 1. This argument was suggested by an anonymous
referee of a previous version of this paper; we also used an analogous argument to prove a similar
result for wavl trees [Haeupler et al. 2009; 2015]. We prefer the first proof above: we think it is a
little simpler, it uses a potential that depends only on the structure of the tree, not its history, and the
proof extends naturally to give inverse-exponential bounds on the amortized number of rebalancing
steps, as we show below.

Although the worst-case insertion rebalancing time is O(logm), we can obtain much better amor-
tized bounds. Indeed, we can obtain the same amortized bounds as for AVL trees built by insertions,
with no deletions. To obtain better bounds for rebalancing, we use the potential method of amortized
analysis [Tarjan 1985a]. As in the proof of Theorem 5.1, we assign a non-negative potential to each
state of the data structure, zero for an empty structure. We define the amortized cost of an operation
to be its actual cost plus the net increase in potential it causes. Then, for any sequence of operations
on an initially empty structure, the total amortized cost of the operations is an upper bound on their
total actual cost.

THEOREM 5.2. Starting with an empty ravl tree, a sequence of m insertions with bottom-up
rebalancing intermixed with arbitrary deletions does at most 3m promote steps.

PROOF. Let the potential of a node be one if it is a 0,1-node or a 1,1-node of positive rank, and
zero otherwise. Let the potential of a tree be the sum of the potentials of its nodes. Define the cost of
an insertion to be the number of promote steps done during rebalancing. A deletion cannot increase
the potential since it cannot create a 0,1-node or a 1,1-node. Consider an insertion. Adding a new
leaf increases the potential by at most one, by making the parent of the new leaf into a 0,1-node or a
1,1-node of positive rank. A non-terminal promote step decreases the potential by one: the promoted
node changes from a 0,1-node to a 1,2-node; the potential of its parent does not change. Thus such
a step has an amortized cost of zero. This is also true of a promote step that promotes the root. A
terminal promote step that promotes a node other than the root can leave the potential unchanged
(if the parent of the promoted node becomes a 1,1-node), and thus has an amortized cost of one.
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A rotate or double rotate step can increase the potential by at most two, by creating two 1,1-nodes
of positive rank. We conclude that the amortized cost of an insertion is at most three: one for the
increase in potential caused by inserting a new leaf, plus zero for each non-terminal promote step,
plus at most two for the last rebalancing step.

By truncating the Fibonacci potential, we can prove the stronger result that rebalancing steps of
rank k occur exponentially infrequently in k.

THEOREM 5.3. Starting from an initially empty tree, a sequence of m insertions with bottom-
up rebalancing intermixed with arbitrary deletions does at most (m − 1)/Fk ≤ (m − 1)/φk−2

rebalancing steps of rank k, for any k > 0.

PROOF. Fix k > 0. Let the potential of a node be its Fibonacci potential if its rank is less than k,
Fk+1 if its rank is k, it has a 0-child, and it is not a 0,1-node, and zero otherwise. Let the potential
of a tree be the sum of the potentials of its nodes. The effect of a rebalancing step on the potential is
the same as in the proof of Theorem 5.1, with the following exceptions. A promote step of rank k or
higher does not change the potential. A promote step of rank i < k that promotes a node y = p(x)
whose parent p(y) has rank at least k decreases the potential by Fi+2 unless j = k − 1, p(y) has
rank k, and p(y) is not a 1,1-node before the step, in which case it does not change the potential.
A rotate or double rotate of rank greater than k does not change the potential. A rotate or double
rotate of rank k decreases the potential by at least Fk+1 − Fk−1 = Fk. Thus no rebalancing step
increases the potential. Furthermore a rebalancing step of rank k either decreases the potential by at
least Fk (if it is a rotate or double rotate) or is preceded by a promote step of rank k−1 that reduces
the potential by Fk+1. Thus the potential decreases by at least Fk for every rebalancing step of rank
k.

6. TOP-DOWN REBALANCING
Rather than rebalance bottom-up after a new leaf is added, we can rebalance top-down before the
leaf is added. Indeed, the safe node method described at the end of Section 4 does rebalancing
top-down once it reaches the bottom of the tree. We can modify this method to rebalance more
eagerly and thereby keep the look-ahead fixed; that is, keep the safe node within O(1) nodes of
the current node of the search. This improves the worst-case concurrency of the tree, because the
critical section of an insertion encompasses only O(1) nodes at any time. The idea is to force a
reset of the safe node after a sufficiently large number of search steps that do not do a reset. A reset
occurs at the next search step unless the current node is a 1,1-node. If the current node is a 1,1-node
but not a 1-child, or both it and its parent are 1,1-nodes, we can force a reset by promoting the
current node and rebalancing from the safe node top-down. This gives us the following top-down
insertion algorithm, which we describe in complete detail to make its operation crystal-clear. If the
tree is empty, create a new node of rank zero containing the item to be inserted and make it the root,
completing the insertion. Otherwise, initialize w and x to be the root, and promote the root if it is
1,1. This establishes the invariant for the main loop of the algorithm: x is a non-null node that is not
a 1,1-node; w is the parent of x unless x is the root, in which case w = x. Repeat the following step
until the item is inserted (see Figure 4).

Top-down insertion step:

From x, take one step down the search path, to y. If y is null, replace it by a new node of rank zero
containing the item to be inserted, completing the insertion (Figure 4a): the new node cannot be a
0-child since x was not a 1,1-node and hence has positive rank. In the remaining cases, y is not null.
If y is not a 1,1-node, replace w by x and x by y, completing the step (Figure 4b). If y is a 1,1-node
but not a 1-child, promote y and replace w by x and x by y, completing the step (Figure 4c). In the
remaining cases, y is a 1,1-node and a 1-child. From y take one step down the search path, to z. If z
is null, replace it by a new node of rank zero containing the item to be inserted. Since y is a 1,1-node,
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Fig. 4. Top-down rebalancing step during an insertion in a ravl tree. Node x is not a 1,1-node. Node y is the child of x
along the search path. Ranks are to the left of nodes, rank differences to the right. (a) Node y is null: replace y by a new node
and stop. (b) Node y is not a 1,1-node: replace w by x and x by y. (c) Node y is a 1,1-node but not a 1-child: promote y,
replace w by x and x by y, and stop. In the remaining cases y is a 1,1-node and a 1-child, and z is the child of y along the
search path. (d) Node z is null and y and z are both left or both right children: replace z by a new node, do a rotate step, and
stop. (e) Node z is null and exactly one of y and z is a left child: replace z by a new node, do a double rotate step, and stop.
(f) Node z is not null and is not a 1,1-node: replace w by y and x by z. In the remaining cases z is not null and is a 1,1-node.
(g) Nodes y and z are both left or both right children: promote y and z, do a rotate step, and replace w by y and x by z. (h)
Exactly one of y and z is a left child: promote y and z, do a double rotate step, replace w by z, and replace x by the child of
z along the search path.

it has rank 0; since y is a 1-child and x is not a 1,1-node, x is a 1,2-node of rank 1. If the new node
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and y are both left children, or, symmetrically, both right children, do a rotate step, completing the
insertion (Figure 4d). If the new node is a right child and y a left child, or symmetrically if the new
node is a left child and y a right child, do a double rotate step, completing the insertion (Figure 4e).
The remaining possibility is z non-null. If z is not a 1,1-node, replace w by y and x by z (Figure 4f).
Otherwise, promote y and z, making y a 0-child, and do a rotate (Figure 4g) or double rotate step
(Figure 4h) to make all rank differences positive. If a single rotation is done, replace w by y and x
by z. If a double rotation is done, replace w by z and x by the new node one step down from z along
the search path (either y or x). This completes the step.

If the first insertion step does a single or double rotation, it changes the root. Subsequent steps do
not affect the root and have w 6= x. Each insertion step either finishes the insertion or replaces x by
a node of smaller rank, so the number of insertion steps is at most one plus the rank of the root. We
define the rank of an insertion step to be the rank of y just before the step, or zero if y is null. Every
insertion step of positive rank is non-terminal, since if y is not a 1,1-node the step ends by replacing
w by x and x by y, and if y is a 1,1-node, z is non-null. We call an insertion step rebalancing if it is
terminal or it does at least one promotion or rotation; the non-rebalancing steps merely traverse the
search path without changing the tree.

We can show by a simple potential argument that the total number of rebalancing steps is O(m).
Let the potential of a 1,1-node be 2, that of a 1,i-node with i > 0 be 1, that of any other node
be 0, and that of a tree be the sum of the potentials of its nodes. A deletion does not increase the
potential, nor does promoting the root at the beginning of an insertion. An insertion into an empty
tree increases the potential by 2. An examination of the cases of an insertion step shows that a
terminal step increases the potential by at most 3, and a non-terminal rebalancing step decreases it
by at least 1. This gives us the following theorem:

THEOREM 6.1. Starting with an empty ravl tree, a sequence of m top-down insertions inter-
mixed with arbitrary deletions takes at most 4m rebalancing steps.

To obtain analogues of Theorems 5.1 and 5.3, we use an exponential potential function that grows
more slowly than the Fibonacci potential.

THEOREM 6.2. A ravl tree built from an empty tree by a sequence ofm > 2 top-down insertions
and intermixed deletions has height at most 2 lgm.

PROOF. Let the potential of a node of rank k be 2(k+1)/2 if it is a 1,1-node, 2(k−1)/2 if it is a
1,i-node with i > 1, and 0 otherwise. Let the potential of a tree be the sum of the potentials of
its nodes. Deletions do not increase the potential, nor does promoting the root at the beginning of
an insertion. An insertion into an empty tree increases the potential by 21/2. Consider a terminal
insertion step that does not do a rotation (Figure 4a). The new node has potential 21/2. The only
other node whose potential can change is the parent y of the new node. The potential of y increases
only if y has rank 1, in which case y changes from a 1,2-node to a 1,1-node and increases in potential
by 2. Thus the total increase is at most 3 · 21/2. In a terminal rotate or double rotate insertion step
(Figures 4d and 4e), the total potential of nodes x and y before the step is 1 + 21/2, and the total
potential of x, y, and the new node after the step is 2 · 21/2 + 2, for a net increase of 1 + 21/2. It
follows that m insertions increase the potential by at most (21/2 + 1)(m− 1) + 21/2, not counting
the effect of non-terminal restructuring steps.

We show by a case analysis that a non-terminal restructuring insertion step does not increase the
potential. Consider such a step of rank k. If the step merely promotes y (Figure 4c), the potential
of y decreases from 2(k+1)/2 to 0. The parent x of y increases in potential only if it changes from
a 2,2-node to a 1,2-node, increasing its potential from 0 to 2(k+1)/2, or it changes from a 1,2-
node to a 1,1-node, increasing its potential from 2(k+1)/2 to 2 · 2(k+1)/2. In either case the total
potential change of x and y is 0. In a non-terminal rotate step (Figure 4g), only x, y, and z can
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change in potential. Their ranks are k + 1, k, and k − 1 before the step and k, k + 1, and k after
the step, respectively. The potential of node x increases from 2k/2 to 2(k+1)/2, that of y increases
from 2(k+1)/2 to 2 · 2k/2, and that of z decreases from 2k/2 to 0, for a total potential increase of
2(k+1)/2 + 2 · 2k/2 − 2k/2 − 2(k+1)/2 − 2k/2 = 0. Similarly, in a non-terminal double rotate step
(Figure 4h), only x, y, and z change in potential, from 2k/2 to 2(k−1)/2, from 2(k+1)/2 to 2(k−1)/2,
and from 2k/2 to 2 ·2k/2, respectively, for a total potential increase of 2 ·2(k−1)/2 +2 ·2k/2−2k/2−
2(k+1)/2 − 2k/2 = 0.

If the root has rank k and it is promoted at the beginning of an insertion, the potential decreases
by 2(k+1)/2. For the root to have height h, it must have rank at least h, which means that the root
promotions have decreased the potential by at least

∑h−1
i=0 2(i+1)/2 = (2(h+1)/2−21/2)/(21/2−1).

Since the total decrease is at most (21/2+1)(m−1)+21/2, this gives 2h/2 ≤ (m−1)/21/2+21/2 ≤
m if m > 2.

THEOREM 6.3. Starting from an empty tree, a sequence of m top-down insertions intermixed
with arbitrary deletions does at most (

√
2 + 1)m/2k/2 restructuring rebalancing steps of rank k.

PROOF. The lemma is immediate for k = 0. Fix k > 0. Redefine the exponential potential
function used to prove Theorem 6.2 to be zero for all nodes of rank greater than k. It is still true that
no non-terminal insertion step increases the potential, and that each terminal step increases it by at
most

√
2 + 1. A restructuring rebalancing step of rank k is non-terminal. If it merely promotes, it

decreases the potential by 2(k+1)/2, by decreasing the potential of y from 2(k+1)/2 to zero. If it does
a single rotation (Figure 4g), it decreases the potential by at least 2k/2: the potentials of x, y, and
z, respectively, are 2k/2, 2(k+1)/2, and 0 before the step and at most 2(k+1)/2, 0, and 0 after. If it
does a double rotation, it also decreases the potential by at least 2k/2: the potentials of x, y, and z,
respectively, are at most 2(k−1)/2, 0, and 2(k−1)/2 after the step. The theorem follows.

By increasing the amount of look-ahead in top-down insertion, we can improve the constants in
Theorems 6.2 and 6.3. Specifically, we force a reset after traversing k consecutive 1,1-nodes, of
which the top one is not a 1-child, or traversing k + 1 consecutive 1,1-nodes of which the top one
is a 1-child, by promoting the bottom 1,1-node and rebalancing appropriately. Here k ≥ 2 is an
appropriately large constant. To analyze this method, we define the potential of a 1,1-node of rank
k to be bk for some appropriate constant b > 1, that of any other node to be zero, and that of a tree
to be the sum of the potentials of its nodes. If the parent of the top 1,1-node has rank k just before
the forced reset, then the rebalancing increases the potential by at most bk − bk−2− bk−3− . . .− 1,
whether or not the top 1,1-node is a 1-child. By choosing k sufficiently large, we can choose b
arbitrarily close to φ while guaranteeing that forced resets do not increase the potential, giving an
analogue of Theorem 6.2 with b in place of

√
2. By truncating the potential, we obtain an analogue

of Theorem 6.3 with b in place of
√

2. Choosing k = 3 is sufficient to give b >
√

2. Interestingly,
for minimum look-ahead (k = 1), this potential function is not useful; for k > 2, giving positive
potential to the 1, i-nodes for i > 1 makes the analysis worse, not better.

7. RELAXED RED-BLACK TREES
In this section we apply our ideas to red-black trees to obtain relaxed red-black trees. Although the
results of this section follow from our results on relaxed B-trees [Sen and Tarjan 2014], we sketch
them here for completeness, to show that they can be derived directly, without using multiway trees
as an intermediary, and to enlarge our study in Section 9 of what can go wrong with alternative
deletion methods.

A red-black tree [Guibas and Sedgewick 1978] is a binary tree is which each node is either red or
black, with the node colors satisfying the following constraints:

Black Rule: Every path from the root to a missing node contains the same number of black
nodes.
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Red Rule: The parent of a red node is black.

Red-black trees are equivalent to 2,4-trees, which are multiway trees in which all leaves have the
same depth, each internal node has 2, 3, or 4 children, each internal node contains one less item than
its number of children, and each leaf contains 1, 2, or 3 items. To obtain the 2,4-tree equivalent of a
given red-black tree, contract each red node into its parent. To obtain the red-black tree equivalent
of a given 2,4-tree, split each node with two items into a black parent and a red child, each with one
item, and split each node with three items into a black parent and two red children. Since there are
two ways to split a node with two items, the latter mapping is one-to-many.

Red-black trees are also equivalent to ranked binary trees satisfying the red-black rank rule: every
node has a non-negative rank, all rank differences are zero or one, every leaf has rank zero, and every
0-child has a parent that is not a 0-child [Haeupler et al. 2015]. Given a ranked binary tree satisfying
the red-black rank rule, we can color its nodes to satisfy the red and black rules by coloring the root
black and coloring each child black if it is a 1-child or red if it is a 0-child. Given a red-black tree,
we can assign ranks to the nodes to satisfy the red-black rank rule by giving each node a rank equal
to the number of black nodes on every path from it to a missing node, not counting the node itself.

Red-black trees were invented by Bayer [Bayer 1972], who called them symmetric binary B-
trees, and popularized by Guibas and Sedgewick [Guibas and Sedgewick 1978], who invented the
red-black representation. A red-black tree of n nodes has height at most 2 lg n. Rebalancing a red-
black tree after an insertion or deletion takes at most two rotations worst-case for an insertion,
at most three rotations worst-case for a deletion, and O(1) amortized color flips for an insertion or
deletion [Tarjan 1983]. The insertion rebalancing algorithm is like that of AVL trees (and ravl trees):
there are three rebalancing cases (ignoring symmetries); the first does only color flips but need not
terminate, the second does a rotation and some color flips and terminates, and the third does two
rotations and some color flips and terminates. For further results and discussion about red-black
trees see [Bayer 1972; Guibas and Sedgewick 1978; Tarjan 1983; 1985b].

We develop a relaxed version of red-black trees in which rebalancing occurs only during in-
sertions, not deletions, with properties like those of ravl trees. To obtain such trees we relax the
red-black rank rule to allow arbitrary positive ranks. A relaxed red-black tree is a ranked binary tree
such that all ranks and rank differences are non-negative and no 0-child has a 0-child as a parent.
To insert an item into a relaxed red-black tree using bottom-up rebalancing, follow the search path
until reaching a missing node. Replace the missing node by a node x of rank zero containing the
item to be inserted. Then rebalance as follows (see Figure 5):

Insertion rebalancing:

While x is a 0-child with a non-null grandparent z that is a 0,0-node, repeat the following step:

Promote: Promote z; x← z.

Now either the rank rule holds or x is a 0-child whose grandparent z is a 0, i-node with i > 0. In
the latter case, proceed as follows. Let y be the parent of x. Do the appropriate one of the following
two steps:

Rotate: If nodes x and y are both left or both right children, rotate at y.
Double Rotate: Otherwise (node x is a left child and y a right child or vice-versa), rotate at x
twice.

Remark: Unlike bottom-up rebalancing in ravl trees, in relaxed red-black trees rotate and double
rotate steps change no ranks.

The rank of an insertion step is the rank of x just before the step.
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Fig. 5. Bottom-up rebalancing after an insertion in relaxed red-black trees. Numbers to the left of nodes are ranks, those to
the right of nodes are rank differences.

To delete an item, we proceed exactly as in ravl trees: we find the node containing the item to
be deleted and swap this item with its predecessor or successor if it is in a node with two non-null
children. Now the item is in a leaf or a node with only one non-null child. If it is in a leaf, we
replace the leaf by a missing node; if it is in a node with one non-null child, we replace this node by
its non-null child. No nodes change ranks.

Instead of rebalancing bottom-up after an insertion, we can rebalance top-down during the search
for the insertion position. If the tree is empty, create a new node of rank zero containing the item
to be inserted and make it the root, completing the insertion. Otherwise, initialize w and x to be
the root, and promote the root if it is 0,0. This establishes the invariant for the main loop of the
algorithm: x is a non-null node that is not a 0,0-node and not a 0-child; w is the parent of x unless x
is the root, in which case w = x. Repeat the following step until the item is inserted (see Figure 6):

Top-down insertion step:

From x, take one step down along the search path, to y. If y is null, replace it by a new node of
rank zero containing the item to be inserted (Figure 6a). This completes the insertion: the new node
may be a 0-child, but x is not. In the remaining cases, y is non-null. If y is not a 0,0-node and not
a 0-child, replace w by x and x by y, completing the step (Figure 6b). If y is a 0,0-node, promote
y (which is not a 0-child by the rank rule), replace w by y, and replace x by the child of y along
the search path; this child cannot be null since it has non-negative rank and it cannot be a 0,0-node
since y was a 0,0-node. This completes the step (Figure 6c). In the remaining cases y is a 0-child,
and hence neither of its children is a 0-child. From y take one step down the search path, to z. If
z is null, replace z by a new node of rank zero containing the item to be inserted; if the new node
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is a 0-child, and z is the child of y along the search path. (d) Node z is null and y has positive rank: replace z by a new node
of rank 0. (e) Node z is null, y has rank 0, and y and z are both left or both right children: replace z by a new node of rank 0,
do a rotate step, and stop. (f) Node z is null, y has rank 0, and exactly one of y and z is a left child: replace y by a new node
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y and x by z. (h) Node z is a 0,0-node but not a 1-child: promote z and replace w by y and x by z. (i) Node z is a 0,0-node
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child of z along the search path. (j) Node z is a 0,0-node and a 1-child, and exactly one of y and z is a left child: promote z,
do a double rotate step, replace w by whichever of x and y is on the search path from z after the rotations, and replace x by
the child of the new w on the search path.
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is a 0-child, do a rotate or double rotate step to restore the rank rule (Figure 6d, 6e, and 6f). This
completes the insertion. The remaining possibility is z non-null. If z is not a 0,0-node, replace w
by y and x by z, completing the step (Figure 6g). If z is a 0,0-node but not a 1-child, promote z,
and replace w by y and x by z, completing the step (Figure 6g). Otherwise (z is a 0,0-node and a
1-child), do a rotate or double rotate step to restore the rank rule (Figures 6h and 6i, respectively). If
a rotate step is done, replace w by z and x by the child of z along the search path. If a double rotate
step is done, replace w by whichever of x and y is along the search path from z after the rotations,
and replace x by the child of the new w along the search path.

Each top-down insertion step either finishes the insertion or replaces x by a node of smaller rank,
so the number of insertion steps is at most one plus the rank of the root. We define the rank of a
top-down insertion step to be the rank of y, or zero if y is null. We call a top-down insertion step
rebalancing if it is terminal or it does at least one promotion or rotation.

We can analyze both bottom-up and top-down rebalancing using the same potential function. To
get an amortized constant bound on the number of rebalancing steps, we define the potential of a
tree to be twice the number of 0,0-nodes plus the number of 0, i-nodes with i > 0. Deletions do not
increase the potential.

Suppose bottom-up rebalancing is used. (See Figure 5.) Insertion of a new node increases the
potential by at most 1: the new node is a 1,1-node and has potential 0, but if its parent has rank 0, it
changes from a 1,1-node to a 0,1-node or from a 0,1-node to a 0,1-node, increasing its potential by
1. A promote step decreases the potential by at least 1: the potential of node z drops by 2, that of its
parent may increase by 1. A rotate step does not change the potential: the potential of y increases
by 1, that of z drops by 1. Similarly, a double rotate step does not change the potential: that of both
y and z drops by 1, that of x increases by 2.

Suppose top-down rebalancing is used. (See Figure 6.) A terminal rebalancing step increases
the potential by at most 1 (Figures 6a (no change), 6d, 6e, and 6f (+1 each)), and a non-terminal
rebalancing step decreases it by at least 1: in Figure 6c, the potential of y drops by 2 and that of
x increases by at most 1; in Figures 6h, 6i, and 6j, the promotion of z decreases its potential by 2
and increases that of y by at most 1, and the rotate (6i) or double rotate (6j) does not change the
potential.

Combining these observations we obtain the following theorem:

THEOREM 7.1. In a relaxed red-black tree built by m insertions, each with either bottom-up or
top-down rebalancing, intermixed with arbitrary deletions, the number of rebalancing steps is at
most 2m.

To bound the root rank and hence the height of the tree, we use an exponential potential function.
We define the potential of a node of rank k to be 2k if it is a 0, i-node with i > 0, 2k+1 if it is a
0,0-node, and zero otherwise; we define the potential of a tree to be the sum of the potentials of
its nodes. Suppose bottom-up rebalancing is used. Insertion of a new node increases the potential
by at most 1: if the parent of the new node has rank 0, its potential increases by 1. A promote
step does not increase the potential: it decreases the potential of z by 2k and increases that of the
parent of z by at most the same amount. Similarly, rotate and double rotate steps do not increase
the potential, by essentially the same argument used for the simple potential function. Similarly, if
top-down rebalancing is used, a terminal rebalancing step increases the potential by at most 1, and
a nonterminal rebalancing step does not increase it, again by essentially the same argument used for
the simple potential function. In either bottom-up or top-down rebalancing, if the root has rank k
and is promoted, the potential drops by 2k+1.

THEOREM 7.2. In a relaxed red-black tree built by m insertions, each with either bottom-
up or top-down rebalancing, intermixed with arbitrary deletions, the rank of the root is at most
lg(m+ 1)− 1, and the height of the root is at most 2 lg(m+ 1).
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PROOF. The only increase in potential is caused by insertions of new nodes and totals at most
m− 1. (An insertion into an empty tree does not increase its potential.) If the root has rank k, there
must have been a promotion of the root for each rank between 0 and k− 1 inclusive, decreasing the
potential by 2k+1−2. Thus 2k+1 ≤ m+1, which implies k ≤ lg(m+1)−1. The rank rule implies
that the rank of the grandparent of a node is greater than the rank of the node, which implies that
the height of the root is at most 2 lg(m+ 1).

By truncating the exponential potential function, we can show that the number of rebalancing
steps of rank k is exponentially small in k.

THEOREM 7.3. In a relaxed red-black tree built from an empty tree by m insertions, each
with either bottom-up or top-down rebalancing, intermixed with arbitrary deletions, the number of
rebalancing steps of rank k is at most m/2k−1.

PROOF. The theorem is immediate for k = 0. Fix k > 0. Redefine the exponential potential to
be zero for all nodes of rank k or greater. Inserting a new node still increases the potential by at
most one, and no insertion rebalancing step can increase it, but a non-terminal bottom-up step of
rank k, which must be a promotion, decreases it by 2k, as does a top-down rebalancing step of rank
k. Since each bottom-up step of rank k is preceded by a non-terminal bottom-up step of rank k− 1,
the theorem follows.

We conclude this section with a few comments about ravl trees versus relaxed red-black trees.
Rebalancing does fewer promotions in the latter than in the former, at least locally. On the other
hand, the height bound is smaller by a constant factor for ravl trees with bottom-up rebalancing than
for relaxed red-black trees, and by increasing the look-ahead we can also make it smaller for ravl
trees with top-down rebalancing. In a ravl tree the height of a node is at most its rank, but in a relaxed
red-black tree the height of a node is at most twice its rank plus one. Thus to compare Theorems 5.3
and 6.3 with 7.3, we need to compare φ (the base in Theorem 5.3) or

√
2 (the base in Theorem 6.3)

with
√

2 (the square root of the base in Theorem 7.3). If rebalancing is bottom-up, or if rebalancing
is top-down and the look-ahead is at least 3, the comparison favors ravl trees. Determining which
variant of which of these data structures is best under what actual circumstances is a subject for
experimental investigation.

8. REBUILDING THE TREE
As the ratio of the number of deletions to the number of insertions approaches one, the height of a
ravl tree or a relaxed red-black tree can become ω(log n), although it remains O(logm). For any
application in which the number of updates is polynomial in the typical tree size, the tree height
will remain O(log n). We think this will be true except in very rare situations. When the number
of updates becomes non-polynomial in the tree size, we can restore the tree height to O(log n) by
rebuilding it. Although we view rebuilding as primarily of theoretical interest, we discuss it here
for completeness. We stress that rebuilding does not save space but only time, and by rebuilding
sufficiently infrequently one can reduce the rebuilding overhead to a vanishing fraction of the total
time. This differs greatly from rebuilding when using the tombstone method (see Section 3): with
the tombstone method, to keep the space linear in the number of undeleted nodes one must rebuild
every time the number of deletions becomes a constant fraction of the number of insertions. Our
trees use no extra space. We offer several versions of a simple rebuilding method and a rule for
when to rebuild. We discuss the rebuilding of ravl trees; one can rebuild relaxed red-black trees in
the same way.

To rebuild the tree, we initialize a new tree to empty. Then we traverse the old tree in symmetric
order, deleting each visited node and inserting it into the new tree. Traversing the old tree takes
O(n) time. Doing the insertions in the new tree takes O(n log n) time, most of it spent searching
for the position to insert the next item. We can reduce the rebuilding time to O(n) by maintaining
the right spine of the new tree in a stack, bottommost node on top. We insert each new node at the
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bottom of the right spine, and then walk up the spine toward the root doing bottom-up rebalancing
until rebalancing is complete. This reduces the search time per insertion to O(1). By Theorem 5.2,
the total rebalancing time for n insertions is O(n), which is O(1) amortized per insertion.

We do not need to rebuild the tree all at once; we can do it incrementally, Once we decide to
rebuild, we do 1 + ε deletions from the old tree and reinsertions into the new tree for every actual
insertion or deletion of an item, where ε > 0 is an appropriately chosen constant, such as ε = 1. To
facilitate the rebuilding, we maintain a current item x that is the next item to be moved from the old
tree to the new one. To begin rebuilding, we initialize x to be the item of minimum key in the tree.
After moving an item from the old tree to the new one, we update x to be the item of minimum key
in the old tree. Rebuilding stops when the old tree is empty. We insert a new item into the new tree
if its key is less than that of the current item, into the old tree if it is greater. Similarly, deletions and
searches are performed in the new tree if the item’s key is less than that of the current item, in the
old tree otherwise. To facilitate the rebuilding process, we can maintain the right spine of the new
tree (which is the path to the position of the next insertion) and the left spine of the old tree (which
is the path to the current item). These paths must be updated during insertions and deletions, but
such updating takes O(1) amortized time per insertion or deletion during rebuilding.

There remains the question of when to rebuild. We want to do this often enough to guarantee that
the tree height is O(log n) at all times but the rebuilding time is small. To decide when to rebuild,
we maintain the current number of items n and the number of insertions m′ since the last rebuilding
started, including reinsertions of items that were in the tree when the rebuilding started. A newly
inserted item whose key is greater than that of the current item only counts once, not twice. For such
an item we increment m′ when it is reinserted, not when it is inserted. When m′/n > α, we begin
rebuilding, where α is a parameter. If rebuilding is all at once, we choose α > 1. If rebuilding is
incremental, we choose α ≥ 1 + 1/ε. As we shall prove, this choice guarantees that each rebuilding
completes before the next one begins. Only a deletion can trigger rebuilding, since an insertion
increases both m′ and n by 1 and hence cannot cause m′/n to exceed α, since α > 1. When this
deletion occurs, we do the deletion and then either rebuild the tree completely or delete and reinsert
1 + ε items. The rebuilding process is deemed to start just after the deletion that triggers it.

THEOREM 8.1. If rebuilding is done all at once, there are at most d/(α− 1) reinsertions over
all rebuildings, O(1/(α− 1)) per deletion.

PROOF. For a given rebuilding, consider the interval of time from the beginning of the previous
rebuilding, or the beginning of the operation sequence if there is no previous rebuilding, to the
beginning of the given rebuilding. Let n be the number of items in the tree at the beginning of the
interval. Let ∆m and ∆d be the number of insertions of new items and the number of deletions
done during the interval. The number of items in the tree at the beginning of the given rebuilding is
n+ ∆m−∆d, as is the number of reinsertions during this rebuilding. For this rebuilding to occur,
it must be the case that m′ = n+ ∆m > α(n+ ∆m−∆d). Subtracting n+ ∆m−∆d from both
sides of this inequality and dividing by α− 1, we get ∆d/(α− 1) > n+ ∆m−∆d. Summing over
all the rebuildings gives the theorem.

THEOREM 8.2. Suppose rebuilding is incremental. If the tree contains n items at the beginning
of a rebuilding, at most n/ε−1 insertions of new items and n/(1+ε)−1 deletions occur during the
rebuilding, and the rebuilding does at most n(1 + 1/ε) − 1 reinsertions. Furthermore m′/n′ ≤ α
throughout the rebuilding, where n′ is the current number of items.

PROOF. The deletion that triggers the rebuilding results in 1+ε reinsertions, after which n−1−ε
additional reinsertions are needed. Each insertion reduces the number of needed reinsertions by at
least ε, each deletion by at least 1 + ε. The bounds on the numbers of insertions, deletions, and
reinsertions during the rebuilding follow. (The bounds are not as tight as possible; we have dropped
some subtractive terms.) Let ∆m and ∆d be the number of insertions of new items and the number
of deletions, respectively, from the beginning of rebuilding up to some time t during rebuilding.
Then m′ < n + ∆m, and the number of items n′ at time t satisfies n′ = n + ∆m − ∆d, so
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m′/n′ < (n+ ∆m)/(n+ ∆m−∆d) ≤ n/(n−∆d) < n/(n− n/(1 + ε)) by the bound on ∆d.
This ratio is 1 + 1/ε ≤ α.

THEOREM 8.3. If rebuilding is incremental, there are at most d(1 + 1/ε)/(α− 1) reinsertions
over all rebuildings.

PROOF. We apply the argument in the proof of Theorem 8.1. For a given rebuilding, consider
the interval of time from the beginning of the preceding rebuilding, or from the beginning of the
operation sequence if there is no previous rebuilding, to the beginning of the given rebuilding. Let
n, ∆m, and ∆d be the number of items in the tree at the beginning of the interval, the number of
insertions of new items during the interval, and the number of deletions during the inteval, respec-
tively. By the argument in the proof of Theorem 8.1, ∆d/(α−1) > n+∆m−∆d. Thus the number
of items in the tree at the beginning of the rebuilding is at most ∆d/(α − 1). By Theorem 8.2, the
number of reinsertions during the rebuilding is at most ∆d(1 + 1/ε)/(α − 1). Summing over all
rebuildings gives the theorem.

THEOREM 8.4. If rebuilding is done all at once, the tree height is always at most logφ n+logφ α
if insertion rebalancing is bottom-up, at most 2 lg n+ 2 lgα if insertion rebalancing is top-down.

PROOF. The bound on tree height follows immediately from Theorem 5.1 for bottom-up rebal-
ancing and from Theorem 6.2 for top-down rebalancing: if n′ is the current number of items in the
tree, m′/n′ ≤ α at all times except just after a deletion that triggers a rebuilding.

THEOREM 8.5. If the rebuilding process is incremental, both the old tree and the new tree have
height at most logφ n + logφ(α(1 + 1/ε)) if insertion rebalancing is bottom-up, at most 2 lg n +
2 lg(α(1 + 1/ε)) if insertion rebalancing is top-down.

PROOF. We prove the bound for bottom-up rebalancing using Theorem 5.1. The bound for top-
down rebalancing follows similarly from Theorem 6.2. Consider an interval of time from the begin-
ning of a rebuilding, or the beginning of the operation sequence, to the end of the next rebuilding,
or the end of the operation sequence if there is no next rebuilding. The tree associated with this
interval is the new tree built by the rebuilding that starts the interval, or the original tree if the in-
terval starts at the beginning of the operation sequence. We prove that the height bound holds for
this tree throughout the interval, which gives the theorem. Let t be a time during the interval, and let
m′ and n′ be the number of insertions into the tree during the interval up to time t and the number
of items in the tree at time t, respectively. If the interval does not end in a rebuilding, or if it does
but t precedes the deletion that triggers this rebuilding, then m′/n′ ≤ α, so the height bound holds
(without the factor of 1 + 1/ε) by Theorem 5.1. Suppose the interval ends with a rebuilding and t
is during this rebuilding. Let n be the number of items just before this rebuilding, and let ∆m and
∆d be the number of insertions of new items and the number of deletions from the beginning of the
rebuilding to t, respectively. Then (m′ −∆m)/(n+ 1) ≤ α. Also,

m′/n′ = m′/(n+ ∆m−∆d)

≤ (m′ −∆m)/(n+ 1− n/(1 + ε)) by Theorem 8.2
= (m′ −∆m)/(n(ε/(1 + ε)) + 1)

≤ (m′ −∆m)/((n+ 1)(ε/(1 + ε)))

≤ α(1 + 1/ε)

The height bound follows by Theorem 5.1.

By choosing ε fixed and α sufficiently large, even growing as a function of n, we can make the
rebuilding time arbitrarily small compared to the time for insertions and deletions, at the cost of only
an additive term in the height bound. It is straightforward to verify that the inverse exponential upper
bounds on insertion rebalancing steps (Theorems 5.2, 5.3, 6.1, and 6.3) hold even with rebuilding,
if the constant factors are adjusted to account for the reinsertions.
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Fig. 7. Counterexample for relaxed red-black trees with one balance bit per node. Rank differences are to the right of
nodes. Dashed lines are arbitrarily long paths of 1-children. (a) Root has two red children. (b) After insertion of new node
a. Children of root become black. (c) After deletion of two biggest items and insertion of new node b. (d) After insertion of
new node c, causing a left rotation that increases the tree height by 1 and leaves the root with two red children.

An alternative approach to rebalancing is to stay within the framework of using rotations to re-
structure the tree. We can use local rebalancing steps that do rank changes and rotations, as in
relaxed balanced trees. For example, one can use the rebalancing steps of chromatic trees [Boyar
et al. 1997] to rebalance a relaxed red-black tree. The rebalancing steps corresponding to insertion
rebalancing are not needed. A similar set of local rebalancing steps suffices for ravl trees. If one
does a sufficiently large constant number of rebalancing steps per deletion, one can keep the tree
height logarithmic in n at all times [Yang and Tarjan 2014]. There are at least two disadvantages of
this approach: it restores balance much less efficiently than reinsertion, and it is more complicated,
since it reintroduces the complexity of deletion rebalancing that we set out to eliminate.

9. USING FEWER BALANCE BITS
So far, the only method we have discussed that achieves an O(logm) height bound using only O(1)
bits of balance information per node is the tombstone method without node deletions (Section 3).
This method produces a data structure with Θ(m) nodes, not Θ(n), however. This leaves the ques-
tion of whether there is a method that avoids rebalancing on deletion while using only n nodes
and O(1) balance bits per node. We show that several approaches to this question fail, including
the approach used by the database provider in the episode mentioned in the introduction. We give
one method that succeeds, but it requires storing the rank of the root as well as doing a cascade of
node swaps during a deletion. Our conclusion, based not on a proof but on consideration of several
alternative methods, is that any method for which bounds like ours hold must rebalance on insertion
and must either store Ω(log logm) bits of balance information per node or spend more than O(1)
restructuring time per deletion. We now attempt to justify this conclusion.

Suppose we store rank differences instead of ranks in the nodes, and we want to keep the rank
differences bounded (to 1 or 2 in a ravl tree, 0 or 1 in a relaxed red-black tree). How do we do
insertions? The most naı̈ve idea is to avoid computing ranks while walking along the search path,
merely inserting each new node with a fixed rank difference. If this difference is positive, we im-
mediately run into the problem that a sequence of insertions of items in sorted order will produce
a linear-depth tree, making search times linear. An alternative for relaxed red-black trees is to give
new nodes a rank difference of zero. This is equivalent to coloring new nodes red, which is what
the insertion algorithm for standard red-black trees does, and was the method used by the database
provider discussed in Section 1. By mixing insertions with deletions, we can build a linear-depth
tree, however. Insert three items in sorted order into an initially empty relaxed red-black tree. The
third insertion creates a 0-child of a 0-child, causing a rotation and resulting in a tree whose root
has two 0-children. Now repeat the following sequence of updates indefinitely: insert an item big-
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Fig. 8. Counterexamples for two alternative methods of insertion and deletion in ravl trees that use one balance bit per
non-root node. Node ranks are shown to the left. (a) New leaves get a maximum rank difference of 1. Dashed lines are
arbitrarily long paths of 1-children. (b) New children get a maximum rank difference of 2. Dashed lines are elided parts of
the tree.

ger than all previous ones, delete the two biggest items, and insert two items each bigger than all
previous ones. Each sequence of an insertion, two deletions, and two insertions adds a 1-child to
the left spine of the tree and produces a root with two red children; the tree consists of the left spine
of the root and the right child of the root. (See Figure 7.) Thus an intermixed sequence of inser-
tions and deletions can build a tree of linear depth. This example is a counterexample both to what
the database provider did and to the space-efficient version of the tombstone method discussed in
Section 3.

It is easy to construct a similar counterexample for the variant of ravl trees in which each new
leaf has a rank difference of 0, and for the variant in which a new leaf that becomes a child of an old
leaf has rank difference 0, but a new leaf that becomes a child of a unary node has rank difference
1. The latter variant corresponds to the way insertions are done in standard AVL trees.

It is not surprising that these variants fail, since insertions can increase our rank-based potential
functions by an arbitrarily large amount, destroying our analyses. We can avoid this by maintaining
the rank of the tree root. Then we can compute the rank of each node visited during a search by
summing rank differences. In a ravl tree, if we give a new node a rank equal to the maximum of zero
and two less than the rank of its parent (thereby giving it a rank difference of 0, 1, or 2), then adding
such a node increases the potential by at most one, and all our analyses still hold. The equivalent
method in a relaxed red-black tree is to give a new node a rank equal to the maximum of zero and
one less than the rank of its parent, thereby giving it a rank difference of 0 or 1. Interestingly, the
method of giving a new node in a ravl tree a rank equal to the maximum of zero and one less than the
rank of its parent (thereby giving it a rank difference of 0 or 1) fails, as the following counterexample
shows. (See Figure 8(a).) For arbitrary k ≥ 1, in O(k2) insertions and deletions build a tree Tk of
height k consisting of a root of rank k and a left and right spine, with each child having a rank
difference of 1 and the two leaves having rank zero, as follows. For k = 1, do one insertion into an
empty tree followed by one insertion of an item smaller than the one in the root and one insertion
of an item larger than the one in the root. For k > 1, start with Tk−1. Do 2(k− 1) insertions to give
every non-leaf a second child of rank difference one. Then insert an item smaller than all those in
the tree followed by an insertion of an item larger than all those in the tree. The first of these will
increase the rank of the root; the second will make the root a 1,1-node. Finally, delete all the leaves
that now have rank difference two. The result is Tk. Thus O(n) updates suffice to build a tree of
height Θ(

√
n).
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So far our counterexamples have only involved deletions of leaves. Such deletions only reduce
the tree potential. On the other hand, deletion of a unary node can increase the potential if the node
replacing it (its old child) increases in rank. The following counterexample shows that this problem
is not just hypothetical. (See Figure 8(b).) Consider the variant of ravl trees in which we maintain
the rank of the root, insert each new leaf with a rank equal to the maximum of 0 and two less than
the rank of its new parent, and when deleting a unary node give its replacing node a rank difference
of 2. This method guarantees that all rank differences are 1 or 2. For arbitrary k ≥ 1, in O(k3)
insertions and deletions build a tree T ′k of height k consisting of a root of rank k in which every
child is a 1-child, every leaf has rank zero, every node on the left and right spines has two children,
and the other non-leaves have one child. For k = 1, build T ′1 = T1. For k > 1, start with T ′k−1.
Insert an item less than all items in the tree and an item greater than all items in the tree. This
increases the length of both spines by one, promotes all the items on the old spines including the
root, and leaves the non-spine children of nodes on the spine with rank difference 2. To each of the
leaves of rank zero and rank difference two, add a child via an insertion. This promotes the parent
and results in a path of two nodes, each of rank difference one. For each of the remaining 2-children,
proceed as follows. Delete the 2-child, replacing it by its only child, which increases in rank by one
and becomes a 2-child. The leaf at the bottom of the path descending from this node now has rank
one. Do two insertions to give this bottom node two 1-children. Delete the new 2-child, increasing
the rank of the two new leaves to one. Choose one of these new leaves and do two insertions to give
it two 1-children. Continue in this way until every node on the path down from the spine has two
1-children, and the topmost node on the path is a 2-child. Do one more insertion to add a child to
one of the rank-0 leaves at the bottom of the path. This promotes every node along the path, creating
a path of 1-children all the way to the spine. Now delete all the 2-children of nodes on this path.
Repeating this construction for every 2-child of a node on the left or right spine produces T ′k. The
number of updates to build T ′k from T ′k−1 is O(k2), so the total number of updates to build T ′k from
an empty tree is O(k3). Thus O(n) updates suffice to build a tree of height Θ(n1/3). Changing the
insertions so that they add nodes of non-negative rank but rank difference 0, 1, or 2 does not affect
this counterexample, since all insertions add nodes of rank 0. The counterexample also works if
deletions use the tombstone method, since all deletions are of leaves or nodes with one child. A
similar counterexample exists for relaxed red-black trees in which deletions are modified to keep all
rank differences 0 or 1.

The counterexample in the previous paragraph suggests (but does not prove) that keeping the
height logarithmically bounded using O(1) balance bits per node requires a deletion method that
does not increase any ranks. We can obtain such a method by making sure that only leaves are
deleted. This gives a valid method, but it requires arbitrarily long sequences of item swaps during
deletions. There are three cases of deletion. To delete an item e, if e is in a leaf, merely delete the
leaf. If e is in a node with a right child, swap e with the first item in the right subtree of the node
containing e, and repeat this step until e is in a leaf; then delete the leaf. If e is in a node with a
left child but no right child, proceed symmetrically: swap e with the last item in the left subtree of
the node containing e, and repeat this step until e is in a leaf; then delete the leaf. The time for a
deletion is O(h+ 1). If we use this deletion method and modify insertions so that a leaf added by a
deletion has a rank equal to the maximum of zero and the rank of its parent minus two, we obtain a
variant of ravl trees in which every node has rank difference 1 or 2 and the bounds we have derived
hold. To represent ranks we need to store the rank of the root plus one bit per node. The same idea
applies to relaxed red-black trees.

Since successive swaps during a deletion are at nodes of strictly decreasing ranks, the number
of swaps during a deletion is at most logφm by Theorem 5.1. The following example shows that
this bound is tight to within a constant factor even in the amortized sense. Let k be an integer large
enough that k < bk/ lg φc − 1 = h. Do a sequence of insertions that build an AVL tree of height h
in which a child has rank difference 1 if it is a right child or it is a descendant of the node x of height
k on the right spine, and all other (left) children have rank difference 2. (See Figure 9(a).) It is easy
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Fig. 9. Counterexample showing that Ω(logm) swaps per deletion can occur. (a) Tree built by insertions. (b) Left children
have rank difference 2 except those that are descendants of x. Right children and proper descendants of x have rank difference
1. Node x has 2k+1 − 1 descendants. There are at most Fh+3 − 1 non-descendants of x. (b) Tree after initial deletions. As
long as the subtree rooted at x is non-empty, deletion of the root will cause swaps along the path from the root to x.

to prove by induction that such a tree can be built by an appropriate sequence of insertions using the
insertion method of Section 3. Indeed, any tree satisfying the AVL rank rule can be so built.

Node x has 2k+1− 1 descendants including itself. The tree contains at most Fh+3− 1 ≤ φh+1 ≤
2k non-descendants of x. Leaf by leaf, delete all nodes except the left child of the root, the nodes
on the right spine, and the descendants of x. (See Figure 9(b).) Now repeatedly delete the item in
the root. Each of the first 2k+1 − 1 such deletions will cause item swaps along the right spine from
the root to x (and possibly some additional swaps). Thus each of these Ω(n) deletions does at least
Ω(h− k) = Ω(logm) swaps.

10. TO REBALANCE ON DELETION OR NOT?
Let us compare ravl trees and relaxed red-black trees to standard kinds of balanced trees. Deletion is
much simpler in the former than in the latter. The price we pay for this simplicity is that the height
bound is logarithmic in the number of insertions rather than the number of nodes, and each node
needs to store lg lgm + O(1) bits of balance information rather than O(1), or lg lg n + O(1) if
rebuilding is done. Rebalancing in ravl trees and relaxed red-black trees affects node exponentially
infrequently in their height. The same is true in some kinds of standard balanced trees, including
wavl trees and red-black trees [Haeupler et al. 2015; Sen and Tarjan 2014], but the bounds are not as
good, because deletion rebalancing can make insertion rebalancing more expensive. Using periodic
rebuilding as discussed in Section 8, we can reduce the height bound in ravl and relaxed red-black
trees to logarithmic in the number of nodes, but for this to be useful the number of updates must be
super-polynomial in the typical tree size, which we view as unlikely in practice. Using the multi-
swapping deletion method discussed in Section 9, we can reduce the amount of balance information
per node to O(1) in ravl trees and relaxed red-black trees, as long as we store the rank of the
root as well. Storing the ranks explicitly, however, is only a small space penalty, and it reduces
the context needed in rebalancing steps, so it seems a small price to pay. Indeed, at least some
authors [Andersson 1993; Weiss 2011] have advocated storing ranks in standard balanced trees,
since it simplifies rebalancing. Doing this eliminates the space advantage of standard balanced trees.
Our tentative conclusion is that our theoretical results favor ravl trees and relaxed red-black trees
over their standard cousins.

We have also done some preliminary experiments in which we compared ravl trees and relaxed
red-black trees (with bottom-up rebalancing and without periodic rebuilding) to standard red-black
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Table I. Performance comparison of red-black, wavl, relaxed red-black, and ravl trees on
typical input sequences (rots = rotations, bals = balance information updates, avg plen =
average path length, max plen = maximum path length).

Test Red-black trees Wavl trees
# rots # bals avg max # rots # bals avg max
×106 ×106 plen plen ×106 ×106 plen plen

1. Random 26.44 116.07 10.47 15.63 29.55 133.74 10.39 15.09
2. Queue 50.32 285.13 11.38 22.50 50.33 184.53 11.20 14.00
3. Working set 41.71 185.35 10.51 16.18 43.69 159.69 10.45 15.35
4. Static Zipf 25.24 112.86 10.41 15.46 28.27 130.93 10.34 15.05
5. Dynamic Zipf 23.18 103.47 10.48 15.66 26.04 125.99 10.40 15.16

Test Relaxed red-black trees Ravl trees
# rots # bals avg max # rots # bals avg max
×106 ×106 plen plen ×106 ×106 plen plen

1. Random 11.45 38.91 11.30 18.90 14.32 80.61 11.11 16.75
2. Queue 33.56 67.10 11.94 23.50 33.55 134.22 11.38 14.00
3. Working set 22.38 50.25 11.61 19.36 28.00 119.92 11.20 16.64
4. Static Zipf 10.78 38.47 12.73 24.69 13.48 78.03 11.12 17.68
5. Dynamic Zipf 10.24 37.83 11.36 18.86 12.66 74.28 11.11 16.84

trees and wavl trees, on typical input sequences. Our results show that ravl trees and relaxed red-
black trees perform significantly fewer rotations and balance information updates than the other
trees, at the cost of slightly greater average and maximum path lengths. We calculate average path
length by measuring the length of the path between the root and each node of the tree, and taking the
average of these lengths; the maximum path length is the maximum of these lengths. All balanced
tree implementations were written in C; all reported quantities are machine-independent.

We generated five tree operation sequences, each performing a total of 226 operations on a tree
of size n = 213. To isolate the effect of rebalancing, only insertions and deletions were performed;
the expected cost of interspersed accesses can be inferred from the average and maximum path
lengths of the tree after each operation. Table I summarizes our results; the average and maximum
path lengths reported are the average values over all operations. The first, fourth, and fifth opera-
tion sequences perform insertions and deletions on randomly selected items, chosen uniformly at
random in the first sequence and according to a Zipf distribution [Estoup 1916; Zipf 1932] with
rank exponent α = 0.9346 in the fourth and fifth sequences. (This value of α is based on a clas-
sic measurement study of the number of unique visitors seen by America Online on December 1,
1997 [Adamic and Huberman 2002].) The fifth sequence simulates a dynamic Zipf distribution by
randomly selecting an item and promoting it to the most popular rank after each operation (this sim-
ulates the “flash crowd” or “slashdot” effect often seen in websites). The second operation sequence
simulates a queue by inserting the items in order and repeatedly deleting the smallest item in the tree
and inserting an item larger than all other items in the tree. The third operation sequence randomly
selects an item and inserts or deletes the lg n items centered around this item in symmetric order.

The results in Table I show that ravl trees performed significantly fewer rotations and balance
information updates—over 42% and 35% fewer, respectively, on average—than red-black trees and
wavl trees on the tested sequences. Similarly, relaxed red-black trees performed over 51% and 68%
fewer rotations and balance information updates, respectively, on average. The price for this im-
provement is a slight increase in the average and maximum path length of the resulting trees: under
5.6% and 4.3% greater, respectively, for ravl trees, and under 11.3% and 33.4% greater, respec-
tively, for relaxed red-black trees, on average. Wavl trees performed more rotations and balance
information updates than red-black trees, but maintained better average and maximum path lengths.
The same comparison holds for ravl trees and relaxed red-black trees.

We plan to conduct more thorough experiments on these and other balanced tree implementations,
such as left-leaning red-black trees [Bayer 1972; Sedgewick 2008]. In particular, we are investigat-
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ing the performance of the trees on worst-case sequences, for which periodic rebuilding in ravl trees
may be required to provide competitive performance.

11. REMARKS
We have shown that one can obtain logarithmic worst-case search time in binary search trees that
are rebalanced only after insertions, not after deletions. The resulting data structures are simpler
than standard balanced search trees. Our results seem to require either that lg lgm + O(1) balance
bits be stored per node, or that deletion be modified to delete only leaves, which seems to require
cascaded swapping of items. Whether this can be proved or disproved is an open question. Also open
is the best way to do incremental rebuilding to overcome the cumulative effect of deletion without
rebalancing. On the experimental side, it would be valuable to do a systematic evaluation of the
practical performance of ravl trees and relaxed red-black trees as compared to red-black trees, wavl
trees, and other standard kinds of trees. Ravl trees and relaxed red-black trees combine simplicity
with efficiency and may well be very useful in practice.
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