
Appeared in 20th ACM-SIAM Symposium

on Discrete Algorithms (SODA ’10)

Deletion Without Rebalancing in Balanced Binary Trees∗

Siddhartha Sen† Robert E. Tarjan‡

Abstract

We address the vexing issue of deletions in balanced trees.

Rebalancing after a deletion is generally more complicated

than rebalancing after an insertion. Textbooks neglect dele-

tion rebalancing, and many database systems do not do it.

We describe a relaxation of AVL trees in which rebalancing

is done after insertions but not after deletions, yet access

time remains logarithmic in the number of insertions. For

many applications of balanced trees, our structure offers per-

formance competitive with that of classical balanced trees.

With the addition of periodic rebuilding, the performance

of our structure is theoretically superior to that of many if

not all classic balanced tree structures. Our structure needs

O(log logm) bits of balance information per node, where m

is the number of insertions, or O(log logn) with periodic

rebuilding, where n is the number of nodes. An insertion

takes up to two rotations and O(1) amortized time. Using

an analysis that relies on an exponential potential function,

we show that rebalancing steps occur with a frequency that

is exponentially small in the height of the affected node.

1 Introduction

Here is the true story that motivated this work, fic-
tionalized to protect the parties involved. An on-line
business contracted with a database provider to build
a real-time database to store customer information, to
be queried each time a customer interacted with the
business, and to be updated on a regular basis. The
database provider decided to use a red-black tree [9] to
store the database, but implemented rebalancing only
after insertions, not after deletions. As a safety check,
a height limit of 80 was placed on the allowed height
of the tree; in a valid red-black tree, a height bound of
80 would allow storage of 240 records, far exceeding the
anticipated number. Exceeding the height bound was
interpreted as an error and triggered a recovery process
intended to restore the database. Some time after the
database was placed in service, the height bound was

∗ Research at Princeton University partially supported by NSF

grants CCF-0830676 and CCF-0832797 and US-Israel Binational

Science Foundation grant 2006204. The information contained

herein does not necessarily reflect the opinion or policy of the
federal government and no official endorsement should be inferred.
†Princeton University, sssix@cs.princeton.edu.
‡Princeton University and HP Labs, ret@cs.princeton.edu.

exceeded, triggering the recovery process. This process,
too, caused the height bound to be exceeded, and this
cycle repeated, causing an extended service outage.

Aside from the legal questions this incident raised,
it raises a theoretical one as well: does it make any
sense to try to maintain balance in a search tree by
rebalancing only after insertions, not after deletions?
Before considering this question, we review some of the
literature concerning deletion in balanced trees. Such a
review provides insight into how the unfortunate event
described above came about.

The original paper on balanced search trees [2],
which introduced AVL trees to the world, is only four
pages long. It describes how to rebalance AVL trees
after an insertion, by doing one or two rotations and
updating height information in O(log n) nodes, where
n is the total number of nodes. An algorithm for
rebalancing after a deletion appeared several years later,
in a technical report by a different author [7]; deletion
requires O(log n) rotations rather than O(1). For all
existing forms of balanced trees, of which there are
many [3, 4, 5, 9, 10, 12, 13, 16], deletion is at least
a little more complicated than insertion, although for
some kinds of balanced search trees, notably red-black
trees [9] and the recently introduced rank-balanced
trees [10], rebalancing after a deletion can be done in
O(1) rotations. Many textbooks describe algorithms
for insertion but not deletion. At least one well-known
database system, Berkeley DB [14, 15], uses a B+ tree
with underfilled nodes that is rebalanced after insertions
but not deletions. Thus it was perhaps natural to try
the same thing for red-black trees. But disaster ensued.

A more precise version of our question is this:
can one maintain a search tree so that search time is
logarithmic but rebalancing is done only after insertions,
not after deletions? To answer this question, we need
to ask, “logarithmic in what parameter?” If there is
no rebalancing after deletions (and none after accesses,
which excludes self-adjusting structures such as splay
trees [18]), then the tree can evolve to have arbitrary
structure, which means that the search time can become
Θ(n). But such an evolution may take many deletions,
and it is still possible that the tree height, and hence the
search time, could remain logarithmic in m, the number
of insertions.

We realize this possibility. We introduce a new
kind of binary tree, the ravl tree (relaxed AVL tree),
which is rebalanced only after insertions, not after
deletions, and whose height is at most logφm, where
φ is the golden ratio. This bound is the same as that
for an ordinary AVL tree without deletions. Indeed,
without deletions a ravl tree is exactly an AVL tree.
Furthermore, rebalancing affects nodes exponentially
infrequently in their heights, which means that the
amortized rebalancing time per insertion is O(1) and
most of the rebalancing occurs deep in the tree. These
results hold for bottom-up rebalancing; we extend them
to top-down rebalancing with finite look-ahead as well.
To obtain our bounds we use an exponential potential
function, an idea we have also used [10] to analyze
rank-balanced trees. Perhaps surprisingly, we obtain
better constant factors for many of our bounds than
the corresponding bounds for rank-balanced trees. Thus
not only does rebalancing after deletions complicate the
implementation, it makes the performance of the data
structure worse in some ways.

It is natural to ask whether one can obtain similar
results for multiway trees, in particular B trees or B+

trees. The answer is yes, and indeed B+ trees with
underfilled nodes have the desired properties, as we
show in a companion paper [17].

The price we pay for our results on binary trees
is that each node in the tree must store lg lgm + 1
bits of balance information (or lg lg n + O(1) with
periodic rebuilding) 1, rather than the one bit per node
needed in AVL [2], rank-balanced [10], and red-black
trees [9]. Indeed, we provide evidence to suggest that
O(1) bits do not suffice. (We leave rigorous resolution
of this question as an open problem.) We conclude
that the effort to keep red-black trees balanced without
rebalancing on deletion was theoretically doomed. That
this would manifest itself in practice is a wonder to a
theoretician.

The body of our paper consists of nine sections.
Section 2 contains our tree terminology. Section 3 de-
fines ravl trees and describes bottom-up rebalancing af-
ter an insertion; the rebalancing algorithm is that of
AVL trees, extended to ravl trees. Section 4 analyzes
the amortized efficiency of bottom-up rebalancing. Sec-
tion 5 describes and analyzes top-down rebalancing with
fixed look-ahead. Section 6 describes a way to rebuild
the tree efficiently if it becomes unbalanced. Section 7
examines other ways of handling insertions and dele-
tions, and gives examples showing that natural methods
that use one balance bit per node fail. Section 8 ex-
plores the pros and cons of rebalancing after deletions.

1We denote by lg the base-two logarithm.

Section 9 gives some preliminary experimental results.
Section 10 contains final remarks.

2 Tree Terminology

Our tree terminology is the same as in [10]. We repeat
it here (almost verbatim) for completeness. A binary
tree is an ordered tree in which each node x has a left
child left(x) and a right child right(x), either or both
of which may be missing. Missing nodes are external;
non-missing nodes are internal. Each node is the parent
of its children. We denote the parent of a node x by
p(x). The root is the unique node with no parent. A
leaf is a node with both children missing. The ances-
tor, respectively descendant relationship is the reflexive,
transitive closure of the parent, respectively child rela-
tionship. If x is a node, its left, respectively right subtree
is the binary tree containing all descendants of left(x),
respectively right(x). The left, respectively right spine
of a binary tree is the path from the root down through
left, respectively right children to a missing node. The
height h(x) of a node x is defined recursively by h(x) = 0
if x is a leaf, h(x) = max{h(left(x)), h(right(x))} + 1
otherwise. The height h of a tree is the height of its
root.

We are most interested in binary trees as search
trees. A binary search tree stores a set of items, each of
which has a key selected from a totally ordered universe.
We shall assume that each item has a distinct key; if
not, we break ties by item identifier. In an internal
binary search tree, each node is an item and the items
are arranged in symmetric order: the key of a node x
is greater, respectively less than those of all items in its
left, respectively right subtree. Given such a tree and
a key, we can search for the item having that key by
comparing the key with that of the root. If they are
equal, we have found the desired item. If the search key
is less, respectively greater than that of the root, we
search recursively in the left, respectively right subtree
of the root. Each key comparison is a step of the search;
the current node is the one whose key is compared with
the search key. Eventually the search either locates the
desired item or reaches a missing node, the left or right
child of the last node reached by the search in the tree.

To insert a new item into such a tree, we first do
a search on its key. When the search reaches a missing
node, we replace this node with the new item. Deletion
is a little harder. First we find the item to be deleted
by doing a search on its key. If neither child of the item
is missing, we find either the next item or the previous
item, by walking down through left, respectively right
children of the right, respectively left child of the item
until reaching a node with a missing left, respectively
right child. We swap the item with the item found. Now

the item to be deleted is either a leaf or has one missing
child. In the former case, we replace it by a missing
node; in the latter case, we replace it by its non-missing
child. If each node has pointers to its children, an access,
insertion, or deletion takes O(h + 1) time in the worst
case, where h is the tree height.

An alternative kind of search tree is an external
binary search tree: the external nodes are the items,
the internal nodes contain keys but no items, and all
the keys are in symmetric order. Henceforth by a
binary tree we mean an internal binary search tree. Our
results extend to external binary search trees and to
other binary tree data structures. We denote by n the
number of nodes and by m the number of insertions
in a sequence of intermixed searches, insertions, and
deletions.

3 Relaxed AVL Trees

A ranked binary tree is a binary tree in which each
node x has an integer rank r(x). Missing nodes have
rank −1. The rank difference of a node x with parent
p(x) is r(p(x)) − r(x). An i-child is a node of rank
difference i; an i, j-node is a node whose children have
rank differences i and j. The latter definition does not
distinguish between left and right children. An AVL
tree is a ranked binary tree in which every node is a
1,1-node or a 1,2-node. The leaves of an AVL tree are
1,1-nodes of rank zero. A relaxed AVL tree, or ravl2

tree, is a ranked binary tree that obeys the following
rank rule: every rank difference is positive.

We consider ravl trees built from the empty tree
by a sequence of intermixed insertions of leaves and
deletions of arbitrary nodes. A new leaf q replaces a
missing node and has a rank of zero. If the parent p of
the new leaf was itself a leaf before the insertion, the new
leaf is a 0-child and violates the rank rule. We restore
the rank rule by promoting and demoting nodes and
doing rotations. A promotion increases the rank of a
node by one, a demotion decreases it by one. A rotation
at a left child x with parent y makes y the right child
of x while preserving symmetric order; a rotation at a
right child is symmetric. (See Figure 1.) To restore
the rank rule, we let q and p be the new leaf and its
parent, respectively; p is null if q is the root. We repeat
the following step until a case other than a promotion
occurs (see Figure 2):

Rebalancing Step at q:

Stop: Node p is null or q is not a 0-child. Stop.

2One meaning of “ravel” is “to undo the intricacies of”. Ravl
trees undo the intricacies of deletions.

y

x

x

y
rotate right at x

C

A B

A

B C

rotate left at y

Figure 1: Rotation. Triangles denote subtrees.

In the remaining cases q is a 0-child. Let s be the sibling
of q, which may be missing.

Promote: Node s is a 1-child. Promote p. Now p is
a 1,2-node, but it may be a 0-child.

In the remaining cases s is not a 1-child and q is a
1,2-node. Assume q is the left child of p; the other
possibility is symmetric. Let t be the right child of q; t
may be missing.

Rotate: Node t is a 2-child. Rotate at q and demote
p. Now no node is a 0-child. Stop.

Doubly Rotate: Node t is a 1-child. Rotate twice
at t, making q its left child and p its right child.
Promote t and demote p and q. Now no node is a
0-child. Stop.

The rank of a rebalancing step is the rank of q just
before the step. During rebalancing there is at most one
violation of the rank rule: q may be a 0-child. The first
step is either a stop or a promotion. In each subsequent
step, q is a 1,2-node. Each step has rank one higher than
that of the previous step. After a rotation, q is a 1,1-
node; so is p, if it was a 1,2-node before the insertion.
After a double rotation, t and at most one of p and q is
a 1,1-node, unless p and q have rank zero, in which case
they are both 1,1-nodes.

To delete a leaf in a ravl tree, we replace it by
a missing node. To delete a node with one child,
we remove it and replace it by its child; this child
becomes the left or right child of the old parent of
the deleted node if the deleted node was a left or right
child, respectively. To delete a node with two children,
we swap it with its symmetric-order predecessor or
successor, making it into a leaf or a node with one child.
We swap the ranks of the swapped nodes, and proceed
as in the deletion of a leaf or a node with one child. In a
deletion no rotations occur, and no ranks change except
that swapped nodes swap ranks.

As long as there are no deletions, all nodes remain
1,1- or 1,2-nodes (except in the middle of rebalancing),
so the tree remains an AVL tree. Indeed, the rebalanc-
ing algorithm is just the standard bottom-up rebalanc-
ing algorithm for AVL trees. All the results we shall

p

sq

1 or 2

0 1

p

sq

0 or 1

1 2

p

sq

1 or 2

1 1
promote

BA BA

p 1 or 2 q 1 or 2p

C

s0 ≥2q

t1 2

q

A

11

t

p

s1 ≥1

rotate

A B B C

p 1 or 2 t 1 or 2

p

sq

1 or 2

1 2
doubly

D

s0 ≥2q

2 1t

1q

1

1p

s ≥1

y
rotate

A

B C

A B C D

Figure 2: Rebalancing after an insertion. Numbers are rank differences. The first case is non-terminating.

derive for bottom-up rebalancing hold as a special case
for AVL trees built by insertions only. Deletions can
create nodes of arbitrary positive rank difference, how-
ever, and thus can create trees that are not AVL trees.
Indeed, deletions can produce trees of arbitrary struc-
ture.

We represent a ravl tree by storing with each node
its rank and pointers to its left and right children. An
alternative is to store ranks in difference form: the root
stores its rank, and every child stores its rank difference.
This only works if access to the tree is always via the
root, and it requires computing node ranks during an
insertion by summing rank differences along the path
from the root to the new leaf. In an AVL tree, rank
differences are one or two, so one bit per node suffices
to store rank differences. But in a ravl tree, rank
differences can become arbitrarily large, and storing
ranks in difference form offers no advantages and at least
one disadvantage. Thus we store ranks explicitly.

Rebalancing requires traversal of the path from the
new leaf toward the root. There are several ways to
support this. One is to add parent pointers, or to use
another representation that supports parental access;
two pointers per node suffice to allow access to the
children and parent of each node [8]. Another is to
store the access path during the search from the root
for the insertion location, either in an auxiliary stack or
by reversing the child pointers along the search path. A

third, which requires only one extra pointer and does
not change the tree structure, is to maintain a trailing
node during the search for the insertion position. This
is the topmost node that will be affected by rebalancing,
namely the parent of the nearest ancestor of the current
node of the search that is neither a 1-child nor a 1,1-
node; if there is no such node, the trailing node is the
root. We initialize the trailing node to be the root and
change it to the parent of the current node of the search
each time the current node is neither a 1-child nor a
1,1-node. Once the search reaches the bottom of the
tree, we do rebalancing steps (modified appropriately)
top-down from the trailing node to the new leaf. One
advantage of this method is that it extends naturally to
support top-down rebalancing with fixed look-ahead, as
we discuss in Section 5.

4 Analysis of Bottom-Up Rebalancing

A search in a ravl tree takes O(h + 1) time, where h
is the tree height. A deletion takes O(h + 1) time to
find the item to be deleted and the node containing its
replacement, if any, plus O(1) time to do the deletion.
An insertion takes O(h+ 1) time to find the location of
the new leaf, plus at most two rotations and O(h + 1)
rebalancing steps. All these bounds are worst-case.
To obtain better bounds for rebalancing and to bound
the height of the tree, we use the potential method
of amortized analysis [19]. To each state of the data

structure we assign a non-negative potential, zero for an
empty structure. We define the amortized cost of an
operation to be its actual cost plus the net increase in
potential it causes. Then for any sequence of operations
on an initially empty structure, the total amortized cost
of the operations is an upper bound on their total actual
cost.

Our first, simple amortization argument shows that
each insertion takes O(1) amortized rebalancing steps.
We define the potential of a node to be one if it is
either a 0,1-node or a 1,1-node of positive rank, and
zero otherwise. We define the potential of a tree to
be the sum of the potentials of its nodes. We define
the cost of a rebalancing step to be one. A deletion
cannot increase the potential since it cannot create a
0-child or a 1,1-node. Consider an insertion. Adding
a new leaf increases the potential by at most one, by
creating a 0,1-node or a 1,1-node of positive rank. A
promotion step that makes a node q a 0-child of its
parent p decreases the potential by one: q becomes a 1,2-
node, decreasing its potential by one, and it becomes a
0-child, which does not change the potential of p. Thus
such a promotion step has an amortized cost of zero.
This is also true of a promotion step that promotes the
root. A promotion step that is followed by a stop does
not increase the potential: it reduces the potential of
the promoted node by one and can make its parent
a 1,1-node, increasing the potential by one. A stop
has no effect on the potential. A rotation or double
rotation can increase the potential by at most two,
by creating two new 1,1-nodes of positive rank. We
conclude that the amortized cost of an insertion is at
most four: adding the new leaf increases the potential
by at most one; if the last step is a stop it and the next-
to-last step have an amortized cost of at most two; if
the last step is a rotation or double rotation it has an
amortized cost of at most three; every promotion step
has an amortized cost of zero unless it is followed by a
stop. This gives the following theorem:

Theorem 4.1. Starting with an empty ravl tree, a
sequence of m insertions with bottom-up rebalancing
intermixed with arbitrary deletions does at most 4m
rebalancing steps.

The proof of Theorem 4.1 also gives the following
generalization:

Theorem 4.2. Starting with an arbitrary ravl tree con-
taining g 1,1-nodes of positive rank, a sequence of m in-
sertions with bottom-up rebalancing intermixed with ar-
bitrary deletions does at most 4m+ g rebalancing steps.

An exponential potential function of the kind first
used by us to analyze another kind of balanced tree [10]

gives our most important result: a ravl tree built from
an empty tree has height logarithmic in the number of
insertions, even if deletions are intermixed arbitrarily.
Recall the definition of the Fibonacci numbers Fk and
of the golden ratio φ: F0 = 0, F1 = 1, Fk = Fk−1 +Fk−2

for k > 1; φ = (1 +
√

5)/2. The inequality Fk+2 ≥ φk

is well-known [11]. We define the potential of a node of
rank k to be Fk+2 if it is a 0,1-node, Fk+1 if it has a
0-child but is not a 0,1-node, Fk if it is a 1,1-node, and
zero otherwise. We define the potential of a tree to be
the sum of the potentials of its nodes. We call this the
Fibonacci potential.

A deletion cannot increase the potential. Adding a
new leaf increases the potential by at most one, either by
creating a new 1,1-node of rank one or by creating a new
0,1-node of rank zero, since F1 = F2 = 1. Consider a
rebalancing step of rank k. A promotion of p that makes
its parent x a 0,1-node does not change the potential:
the potential of x and p, respectively, is Fk+1 and Fk+2

before the step, and Fk+3 = Fk+1 + Fk+2 and zero
after. A promotion that makes p a 0-child but does
not make its parent x a 0,1-node also does not change
the potential: the potential of x and p, respectively, is
zero and Fk+2 before the step, and Fk+2 and zero after.
Likewise, a rotation does not increase the potential:
nodes p and q have potential Fk+1 = Fk+Fk−1 and zero
before the step and Fk and at most Fk−1 after. Neither
does a double rotation: the total potential of p, q, and t
is Fk+1 before the step and at most Fk + Fk−1 = Fk+1

after. (Here we use F0 = 0.) The final possibility is
a promotion of a node p followed by a stop. If the
promotion makes the parent x of p a 1,1-node, it does
not change the potential: the total potential of x and p
is Fk+2 both before and after the promotion. Otherwise
the promotion decreases the potential by Fk+2.

Theorem 4.3. If a ravl tree is built from an empty
tree by a sequence of m insertions with bottom-up
rebalancing intermixed with arbitrary deletions, m ≥
Fh+3 − 1 ≥ φh. Thus h ≤ logφm.

Proof. Let the potential be the Fibonacci potential.
The first insertion leaves the potential at zero. Each
subsequent insertion increases the potential by at most
one, not counting decreases resulting from promotions
followed by stops. If the rank of the root is r, there
was a promotion of rank i that did not create a 1,1-
node followed by a stop, for each i from 0 to r − 1,
inclusive. The total decrease in potential caused by
these promotions is

∑r+1
i=2 Fi = Fr+3 − 2. Since the

potential is always non-negative, m−1 ≥ Fr+3−2. Since
all rank differences are positive and the leaves have non-
negative rank, h ≤ r. Thus m ≥ Fh+3−1 ≥ Fh+2 ≥ φh.

By truncating the Fibonacci potential, we can show

that rebalancing steps of rank k occur exponentially
infrequently in k.

Theorem 4.4. Starting from an initially empty tree,
a sequence of insertions with bottom-up rebalancing
intermixed with arbitrary deletions does at most (m −
1)/Fk ≤ (m − 1)/φk−2 rebalancing steps of rank k, for
any k > 0.

Proof. Fix k > 0. Let the potential of a node be its
Fibonacci potential if its rank is less than k, Fk+1 if
its rank is k, it has a 0-child, and it is not a 0,1-node,
and zero otherwise. Let the potential of a tree be the
sum of the potentials of its nodes. Deletions do not
increase the potential. The addition of a new leaf other
than the first increases the potential by at most one.
No rebalancing step increases the potential. A step of
rank k is preceded by a promotion of rank k− 1. If the
step of rank k is a stop or a promotion, the promotion
of rank k− 1 reduces the potential by Fk+1. If the step
of rank k is a rotation or double rotation, it reduces
the potential by at least Fk+1 − Fk−1 = Fk. Thus the
potential decreases by at least Fk for each rebalancing
step of rank k.

5 Top-Down Rebalancing

Rather than rebalance bottom-up after a new leaf is
added, we can rebalance top-down before the leaf is
added. Indeed, the trailing node method described at
the end of Section 3 does rebalancing top-down once
it reaches the bottom of the tree. We can modify this
method to rebalance more eagerly and thereby keep the
look-ahead fixed; that is, keep the trailing node within
O(1) nodes of the current node of the search. The idea
is to force a reset of the trailing node after a sufficiently
large number of search steps that do not do a reset. A
reset occurs at the next search step unless the current
node is a 1,1-node. If the current node and its parent
are 1,1-nodes, we can force a reset by promoting the
current node and rebalancing from the trailing node top-
down. By doing this often enough but not too often, we
obtain a top-down rebalancing method with fixed look-
ahead that has the properties established in Section 4 for
bottom-up rebalancing (with worse constant factors).
As the look-ahead increases, the efficiency of top-down
rebalancing approaches that of bottom-up rebalancing.

We shall analyze the version of this method that
forces a reset every time the search during an insertion
visits three 1,1-nodes in a row without reaching a leaf;
this is the smallest amount of look-ahead that gives the
results we seek. Let the potential be four times the
simple potential used to prove Theorems 4.1 and 4.2;
namely, four times the number of 0,1-nodes and 1,1-
nodes of positive rank. A forced reset takes four

rebalancing steps and decreases the potential by at least
four, since it destroys three 1,1-nodes and creates at
most two, so the amortized cost of a forced reset is
at most zero. Deletions do not increase the potential.
Adding a leaf increases the potential by at most four.
The rebalancing after a leaf is added consists of a
stop, or of one, two, or three promotions followed by
a terminal step. The potential increase in each case is
zero, at most four, at most zero, and at most minus
four, respectively. The amortized cost of an insertion
is thus at most ten; the second case is the worst. This
gives the following analogue of Theorem 4.2:

Theorem 5.1. Starting with an arbitrary tree contain-
ing g 1,1-nodes of positive rank, a sequence of m inser-
tions with top-down rebalancing intermixed with arbi-
trary deletions takes at most 10m+4g rebalancing steps.

To obtain analogues of Theorems 4.3 and 4.4, we
use an exponential potential that grows more slowly
than the Fibonacci potential. For a base b > 1 to
be chosen later, we define the potential of 1,1-nodes of
rank k to be bk, the potential of all other nodes to be
zero, and the potential of a tree to be the sum of the
potentials of its nodes; nodes with a 0-child do not need
potential since we shall analyze the effect of a forced
reset as a unit. We want to guarantee that a forced
reset does not increase the potential. Consider a forced
reset whose topmost rebalancing step is of rank k. The
net increase in potential caused by the forced reset is at
most bk+1 − bk−1 − bk−2 − bk−3 if the topmost step is a
stop, at most bk − bk−2 − bk−3 if this step is a rotation
or double rotation. Choose b to be the largest real root
of b3 − b− 1 = 0. Then a forced reset does not increase
the potential. Adding a new leaf and rebalancing at the
bottom of the tree increases the potential by O(1). A
promotion step of rank k that does not create a 1,1-node
and is followed by a stop decreases the potential by bk.
We conclude that bh ≤ cm for some positive constant c,
giving the following theorem:

Theorem 5.2. A ravl tree built from an empty tree by
a sequence of m insertions with top-down rebalancing
intermixed with arbitrary deletions has height at most
logbm+ O(1), where b = 1.325+ is the largest real root
of b3 − b− 1.

Theorem 5.3. Starting from an initially empty tree,
a sequence of m insertions with top-down rebalancing
intermixed with arbitrary deletions does O(m/bk) rebal-
ancing steps of rank k for any k ≥ 0, where b has the
same value as in Theorem 5.2.

Proof. The theorem is immediate for k < 4. Suppose
k ≥ 4. Let the potential of a node be bj if it is a 1,1-
node of rank j < k and zero otherwise; let the potential

of a tree be the sum of the potentials of its nodes.
Deletions do not increase the potential. Adding a new
leaf increases the potential by O(1). Neither a forced
reset nor the rebalancing after a new leaf is added can
increase the potential. Consider a rebalancing step of
rank k. This step must be part of a forced reset whose
topmost rebalancing step is of rank at least k, and which
begins with the promotion of a node of rank less than k.
This forced reset reduces the potential by at least bk−2.

By increasing the amount of look-ahead in top-down
rebalancing, we can improve the constants in Theo-
rem 5.1 to be arbitrarily close to those in Theorem 4.2,
and we can make the base b in Theorems 5.2 and 5.3 ar-
bitrarily close to φ. Indeed, if we force a reset every time
the search during an insertion visits four 1,1-nodes in a
row without reaching a leaf, then Theorems 5.2 and 5.3
hold for b the largest positive root of b4 − b2 − b − 1,
which exceeds

√
2.

6 Rebuilding the Tree

As the ratio of the number of deletions to the number
of insertions approaches one, the height of a ravl tree
can become ω(log n), although it remains O(logm).
For many applications this is not a concern, but for
those in which it is, we can keep the height O(log n)
by periodically rebuilding the tree. How to do the
rebuilding, and how often, are interesting questions that
deserve careful study. Here we offer a simple rebuilding
method and some thoughts on how often to rebuild.

To rebuild the tree, we initialize a new tree to
empty. Then we traverse the old tree in symmetric
order, deleting each visited node and inserting it into
the new tree. Traversing the old tree takes O(n) time.
To facilitate building the new tree, we store the nodes
on its right spine on a stack, bottommost node on top.
Each insertion into the new tree takes O(1) amortized
time, and rebuilding the entire tree takes O(n) time.
The new tree has height at most lg n+ 1: every child is
a 1- or 2-child, and the 2-children have parents on the
right spine. The new tree also has potential O(n) for
any of the potential functions we have considered.

To decide when to rebuild the tree, we keep track
of n and of the rank r of the root. If we are using
bottom-up rebalancing, we rebuild the tree whenever
r > logφ n + c, where c is a small positive constant.
Then the rebuilding time is O(1/(φc − 1)) per deletion.
The larger we choose c, the smaller the overhead for
rebuilding, but the larger the height can become as a
function of n. If we allow c to grow as a function of n,
we can make the rebuilding time o(1) per deletion while
still maintaining a height bound of logφ n plus a lower-
order term. If we are using top-down rebalancing, we

rebuild the tree whenever r > logb n+ c, where b is the
base in Theorem 5.2 and c is larger than the additive
constant in Theorem 5.2.

We can also make the rebuilding incremental. For
example, we can start the rebuilding when the height
bound is violated and move two nodes from the old to
the new tree after each insertion or deletion. During
rebuilding, we do each insertion in the old or new tree
as appropriate: such an operation is in the new tree
if the key of the new item is at most that of the last
item moved, in the old tree otherwise. We store the
left spine of the old tree and the right spine of the
new tree in stacks, so that the next node to be deleted
from the old tree, and its insertion location in the new
tree, can be found in O(1) time. We must update these
stacks during insertions and deletions, but this takes
O(1) amortized time per insertion or deletion. If n is
the number of items in the old tree when rebuilding
starts, the number in the new tree will be between n/2
and 2n when rebuilding stops.

Whether the tree is rebuilt incrementally or all at
once, the tree height is always at most logφ n+O(1) with
bottom-up rebalancing or logb n + O(1) with top-down
rebalancing, and Theorems 4.2 and 4.4, or 5.1 and 5.3
hold, respectively.

7 Good and Bad Alternatives

Each node in a ravl tree stores Ω(log log n) bits of
balance information, rather than the one bit per node
needed in other kinds of balanced search trees. It is
natural to ask whether so many bits are necessary in
ravl trees; or, stated differently, whether there exists a
variant of ravl trees that stores only one bit per node.

All the results we have presented rely on three
properties: if a new leaf is a 0-child before rebalancing,
it has rank zero, if the parent of a new leaf is a 1,1-node,
it has rank 1, and deletions do not increase any rank.
Thus all the results still hold if we modify insertions so
that a leaf added by an insertion has rank at least zero
and at most the maximum of zero and the rank of its
parent minus two, or the rank of its parent minus one if
the other child of its parent has rank difference at least
two. We can also modify deletions so that the rank of a
new leaf (created by deleting its only child) is decreased
by any non-negative amount up to its old rank, giving
it a new rank between zero and its old rank, inclusive.

As we noted earlier, one balance bit can encode a
rank difference of 1 or 2 in non-root nodes and requires
storing the rank of the root explicitly to determine ac-
tual ranks along a path originating at the root. The
modification to insertions described above is compatible
with this storage scheme, but the modification to dele-
tions is not. During an insertion, if we give a new leaf

ka)

k - 1 k - 1

0

1 1

0

kb)

k - 1

k - 2

k - 1

k - 2

1 1

2

1 11

2

1

0 0 0 0 0000

Figure 3: Counterexamples for two alternative methods of insertion and deletion that use one balance bit per
non-root node.

the maximum rank allowed by the modification above,
then one bit suffices to store the rank difference of the
new leaf, and the parent of the new leaf can only be
a 1,1-node if its rank is 1. During a deletion, if we de-
crease the rank of a new leaf, however, then its rank dif-
ference may exceed 2; at the same time, allowing ranks
to increase may create 1,1-nodes of higher rank. In fact,
modifications of the insertion method that create a 0-
child or a 1,1-node of arbitrary rank before rebalancing,
or modifications of the deletion method that increase
ranks, invalidate the proofs of Theorems 4.3 and 5.2. In-
deed, we describe two such modifications and construct
a sequence of updates for each that produces trees of
height a fractional power of m.

Suppose that we leave deletion unmodified but
modify insertion to give the new leaf a rank difference of
one unless that would make its rank negative, in which
case the leaf gets a rank difference of zero. The following
class of sequences builds trees of height Ω(

√
m). (See

Figure 3a.) Suppose we have built a tree of rank k
consisting of a left and right spine, with each child
having rank difference one and the two leaves having
rank zero. Do 2(k − 1) insertions to give every non-
leaf a second child of rank difference one. Then do two
insertions of children of the two leaves. The first such
insertion will increase the rank of the root; the second
will make the root a 1,1-node. Finally, delete all the
leaves that now have rank difference two. The result is
a tree of rank k + 1 of the same type.

Suppose that we leave insertion unmodified but
modify deletion so that when a node with one child
is deleted, its child (which replaces it) gets a rank
difference of two. This delays the problem illustrated
in the previous construction but does not avoid it:
the following class of sequences builds trees of height
Ω(m1/3). (See Figure 3b.) Suppose we have built a tree
of rank k in which every child is a 1-child, every leaf

has rank zero, every node on the left or right spine has
two children, and the other non-leaves have one child.
Do two insertions of children of the leaves on the left
and right spines. Now the tree has rank k + 1, every
child on the left and right spines is a 1-child, the leaves
on the spines have rank zero, and every non-leaf on the
spine of rank two or more has a child of rank difference
two from which a path of 1-children descends to a leaf
of rank zero. Do two insertions that add 1-children to
the two nodes on the spines of rank one. For each of the
two nodes of rank zero and rank difference two, do an
insertion to add a child; this promotes the parent and
results in a path of two nodes, each of rank difference
one. For each of the remaining 2-children, proceed as
follows. Delete the 2-child, replacing it by its only child,
whose rank increases by one. The leaf at the bottom of
the path descending from this node now has rank one.
Do two insertions to make this node a 1,1-node with
two leaves of rank zero as children. Delete the new 2-
child; choose one of the new leaves of rank one and by
two insertions make it a 1,1-node with two leaves of
rank zero as children. Continue in this way until the
remaining 2-child is a 1,1-node. Add one leaf at the
bottom of the path, causing promotions all along the
path and making the path into a path of 1-children
descending to a leaf of rank zero. Delete all the 2-
children of nodes on this path. Repeat this construction
for every 2-child of a node on the left or right spine.
The result is a tree of rank k+ 1 of the same type. The
number of insertions and deletions needed to increase
the rank by one is O(k2).

The latter counterexample suggests (but does not
prove) that obtaining a height bound logarithmic in the
number of insertions, while using one bit per non-root
node, requires a deletion method that does not increase
any ranks. Thus if we guarantee that all deletions occur
at leaves, then we can evade the above counterexample

Test Red-black trees Rank-balanced trees Ravl trees
rots # bals avg max # rots # bals avg max # rots # bals avg max
×106 ×106 plen plen ×106 ×106 plen plen ×106 ×106 plen plen

1. Random 26.443 116.070 10.472 15.627 29.553 133.737 10.390 15.092 14.315 80.606 11.114 16.753
2. Queue 50.317 285.129 11.375 22.501 50.325 184.527 11.195 13.999 33.550 134.218 11.376 13.999
3. Working set 41.714 185.348 10.510 16.181 43.686 159.689 10.445 15.345 28.003 119.924 11.202 16.641
4. Static Zipf 25.238 112.858 10.413 15.458 28.272 130.927 10.338 15.045 13.480 78.029 11.117 17.683
5. Dynamic Zipf 23.176 103.472 10.477 15.661 26.038 125.985 10.404 15.158 12.656 74.275 11.110 16.841

Table 1: Performance comparison of red-black, rank-balanced, and ravl trees on typical input sequences (rots
= rotations, bals = balance information updates, avg plen = average path length, max plen = maximum path
length).

because such a deletion does not affect the rank of
any other node in the tree. We can in fact do all the
deletions at the leaves, but a single deletion may require
a number of swaps, rather than just one. To delete an
item with two children, swap it with its successor. Now
the item has at most one child, a right child. If it has a
right child, swap it with the item at the bottom of the
left spine of this child (the successor of the successor).
Repeat such swaps until the item to be deleted is a
leaf; then delete it. To delete an item with only a right
child, proceed in the same way; to delete an item with
only a left child, proceed symmetrically. The time for a
deletion is O(h+ 1). The structure of the tree remains
the same except for the loss of a leaf. If we use this
deletion method and we modify insertions so that a leaf
added by an insertion has rank the maximum of zero
and the rank of its parent minus two, or the rank of
its parent minus one if its sibling has rank difference
at least two, we obtain a variant of ravl trees in which
every node has rank difference 1 or 2, every node is a
1,1-node or a 1,2-node or has a missing child, and the
bounds we have derived for ravl trees still hold. To
represent ranks, we need one bit per node plus the rank
of the root. We have no good bound on the number
of swaps during deletions, however, which could be
proportional to logm per deletion. Whether this can
be reduced to O(1) amortized per deletion via some
periodic rebuilding scheme is a question we leave for
further study.

8 To Rebalance on Deletion or Not?

Let us compare ravl trees to standard kinds of balanced
search trees. Deletion is much simpler in ravl trees.
Ravl trees need O(log logm) balance bits per node
instead of the one bit per node needed by AVL trees,
rank-balanced trees, and red-black trees. Their height
is at most logφm, versus logφ n for AVL trees, 2 lg n
for red-black trees, and min{logφm, 2 lg n} for rank-
balanced trees. With periodic rebuilding, at a cost

of O(1) per update, a height bound of logφ n + O(1)
can be maintained, and only O(log log n) balance bits
per node are needed. Rebalancing after an insertion
takes O(1) rotations worst-case and O(1) amortized
time, and nodes are affected by rebalancing with a
frequency exponentially small in their height. These
results hold for rank-balanced trees and red-black trees,
but the constant factors are worse [10]; they do not
hold for AVL trees subject to intermixed insertions and
deletions. All these comparisons favor ravl trees, except
for the extra space needed for balance information. At
least some authors, however, have suggested storing
complete rank information for balanced trees, claiming
that it simplifies rebalancing [3]. Doing this eliminates
the space advantage of balanced trees.

9 Experimental Results

In our preliminary experiments, we compared ravl trees
(without periodic rebuilding) to standard red-black
trees [9] and rank-balanced trees [10] on typical input
sequences. Our results show that ravl trees perform sig-
nificantly fewer rotations and balance information up-
dates than the other trees, at the cost of slightly greater
average and maximum path lengths. All balanced tree
implementations were written in C; all reported quan-
tities are machine-independent.

We generated five tree operation sequences, each
performing a total of 226 operations on a tree of size
n = 213. To isolate the effect of rebalancing, only
insertions and deletions were performed; the expected
cost of interspersed accesses can be inferred from the
average and maximum path lengths of the tree after
each operation. Table 1 summarizes our results; the
average and maximum path lengths reported are the
average values over all operations. The first, fourth,
and fifth operation sequences perform insertions and
deletions on randomly selected items, chosen uniformly
at random in the first sequence and according to a Zipf
distribution [6, 20] with rank exponent α = 0.9346

in the fourth and fifth sequences. (This value of
α is based on a classic measurement study of the
number of unique visitors seen by America Online on
December 1, 1997 [1].) The fifth sequence simulates
a dynamic Zipf distribution by randomly selecting an
item and promoting it to the most popular rank after
each operation (this simulates the “flash crowd” or
“slashdot” effect often seen in websites). The second
operation sequence simulates a queue by inserting the
items in order and repeatedly deleting the smallest
item in the tree and inserting an item larger than all
other items in the tree. The third operation sequence
randomly selects an item and inserts or deletes the lg n
items centered around this item in symmetric order.

The results in Table 1 show that ravl trees per-
formed significantly fewer rotations and balance infor-
mation updates—over 42% and 35% fewer, on average,
respectively—than red-black trees and rank-balanced
trees on the tested sequences. The price for this im-
provement is a slight increase in the average and maxi-
mum path length of the resulting trees: under 5.6% and
4.3% greater, on average, respectively. Rank-balanced
trees performed slightly more rotations and balance in-
formation updates than red-black trees, but maintained
better average and maximum path lengths.

We are in the process of conducting more thorough
experiments on these and other balanced tree imple-
mentations, such as left-leaning red-black trees [5, 16].
In particular, we are investigating the performance of
the trees on worst-case sequences, for which periodic
rebuilding in ravl trees may be required to provide com-
petitive performance.

10 Remarks

We have shown that one can obtain logarithmic worst-
case search time in a binary tree without rebalanc-
ing after deletions, but this seems to require storing
Ω(log log n) balance bits per node. Proving this (or dis-
proving it) would be an interesting theoretical result.
Our new data structure, the ravl tree, shows promise as
a simple and efficient implementation of binary search
trees, and we plan to do further experiments to evaluate
its performance in practice.

References

[1] L. A. Adamic and B. A. Huberman. Zipf’s law and the
Internet. Glottometrics, 3:143–150, 2002.

[2] G. M. Adel’son-Vel’skii and E. M. Landis. An algo-
rithm for the organization of information. Sov. Math.
Dokl., 3:1259–1262, 1962.

[3] A. Andersson. Balanced search trees made simple. In
WADS, volume 709, pages 60–71, 1993.

[4] R. Bayer. Binary B-trees for virtual memory. In
SIGFIDET, pages 219–235, 1971.

[5] R. Bayer. Symmetric binary B-trees: Data structure
and maintenance algorithms. Acta Inf., 1:290–306,
1972.

[6] J. B. Estoup. Gammes stenographiques., 1916.
[7] C. C. Foster. A study of AVL trees. Technical Report

GER-12158, Goodyear Aerospace Corp., 1965.
[8] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E.

Tarjan. The pairing heap: a new form of self-adjusting
heap. Algorithmica, 1(1):111–129, 1986.

[9] L. J. Guibas and R. Sedgewick. A dichromatic frame-
work for balanced trees. In FOCS, pages 8–21, 1978.

[10] B. Haeupler, S. Sen, and R. E. Tarjan. Rank-balanced
trees. In WADS, pages 351–362, 2009.

[11] D. E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley,
1973.

[12] J. Nievergelt and E. M. Reingold. Binary search trees
of bounded balance. SIAM J. on Comput., pages 33–
43, 1973.

[13] H. J. Olivié. A new class of balanced search trees: Half
balanced binary search trees. ITA, 16(1):51–71, 1982.

[14] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB.
In USENIX Annual, FREENIX Track, pages 183–191,
1999.

[15] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley
DB, 2000.

[16] R. Sedgewick. Left-leaning red-black trees.
www.cs.princeton.edu/˜rs/talks/LLRB/LLRB.pdf.

[17] S. Sen and R. E. Tarjan. Deletion without rebalancing
in multiway search trees. In ISAAC, 2009. To appear.

[18] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[19] R. E. Tarjan. Amortized computational complexity.
SIAM J. Algebraic and Disc. Methods, 6:306–318, 1985.

[20] G. K. Zipf. Selected studies of the Principle of Relative
Frequency in Language. Harvard Univ. Press, 1932.

