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Abstract

The advent of machine learning models that surpass human decision-making ability
in complex domains has initiated a movement towards building AI systems that
interact with humans. Many building blocks are essential for this activity, with a
central one being the algorithmic characterization of human behavior. While much
of the existing work focuses on aggregate human behavior, an important long-range
goal is to develop behavioral models that specialize to individual people and can
differentiate among them.
To formalize this process, we study the problem of behavioral stylometry, in which
the task is to identify a decision-maker from their decisions alone. We present
a transformer-based approach to behavioral stylometry in the context of chess,
where one attempts to identify the player who played a set of games. Our method
operates in a few-shot classification framework, and can correctly identify a player
from among thousands of candidate players with 98% accuracy given only 100
labeled games. Even when trained on amateur play, our method generalises to out-
of-distribution samples of Grandmaster players, despite the dramatic differences
between amateur and world-class players. Finally, we consider more broadly
what our resulting embeddings reveal about human style in chess, as well as the
potential ethical implications of powerful methods for identifying individuals from
behavioral data.

1 Introduction

The advent of machine learning models that surpass human decision-making ability in complex
domains raises the prospect of building AI systems that can collaborate and interact productively
with humans. While many advances will be essential in order to achieve this far-reaching goal,
algorithmically characterizing aspects of human behavior will be a significant step. Whereas existing
work focuses on characterizing human behavior in an aggregate or generic sense, genuine human-AI
interaction will require specializing these characterizations to individual people.

Developing algorithms that can detect signatures of individual decision-making style would constitute
an important advance for many reasons. First, being able to recognize an individual from their
behavioural characteristics would greatly benefit an AI system’s ability to coordinate with that
individual. In general, decision-making styles can range from complementary to clashing, and a
predictive characterization of an individual’s decisions would be useful for an AI system trying to
adapt to their style. Second, such fine-grained, individual-level characterizations would help isolate
the distinguishing features of individual styles. In a domain where ML systems are able to match
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or surpass human performance, it becomes natural to try extending these systems to pinpoint the
types of decisions a person is particularly good at, and types of decisions they could potentially
improve. Finally, applying these algorithms to many different individuals would shed light on
the structure of decision-making in the domain itself. For example, certain instances could prove
particularly discriminative in detecting individual style. In addition to these benefits, the ability to
identify individuals from behavioral traces also raises ethical concerns centered around privacy and
generalization to high-stakes domains. We discuss the ethical consequences of our work in Section 5.

To formalize the above process, we study the problem of behavioral stylometry, in which the goal is
to identify a decision-maker from their decisions alone. We pursue this task in the domain of chess,
which for many reasons is an ideal model system for developing human-compatible algorithms. AI
systems surpassed all human-level ability in chess at least 15 years ago. Despite this, millions of
people at all skill levels still actively play. Through their activity, people generate detailed traces of
their decisions, which are digitally recorded and publicly available. In chess, behavioral stylometry
reduces to predicting the identity of a player from the moves they played in a given set of games.

We present a transformer-based approach to behavioral stylometry in chess. We show how to adapt
recent work in speech verification to the problem of detecting individual decision-making style.
Working in the domain of chess requires us to extend these methods to the complex types of data
found in the game-playing structure of chess. We apply our model in a few-shot classification setup,
where only a small number of games are provided for the model to learn a representation of a player’s
decisions, and the model must then identify the player from thousands of possible candidates, based
on another small sample of their games. Compared to a recent approach, our method achieves high
accuracy on this task, while being much more scalable and data-efficient. Our resulting embeddings of
players and their games reveals a structure of human style in chess, with players who are stylistically
similar clustering together in the space. We consider the implications of these findings, including the
potential ethical implications of identifying individuals from their behavioral data.

2 Related Work

Speaker verification. Our work adapts recent work in speaker verification [46, 52], where given a
speaker’s known utterances, the task is to verify whether an utterance belongs to that speaker. Recent
approaches embed utterances into a vector space such that different speakers are distinguishable [28,
42]. These embedding approaches can also be used for downstream tasks such as voice cloning and
multi-speaker speech synthesis [21, 27, 34].

A key decision for our task is the choice of loss function, of which two families are most relevant [13].
Classification-based objectives are designed to identify (classify) an unknown target speaker from a
pool of possible candidates. Cross-entropy loss is a simple approach, with many variations including
angular softmax loss [29], cosine loss [50], and additive angular margin loss [14]. Contrast or
metric-learning based objectives instead directly optimize the contrastiveness for samples in different
classes, and similarity for those within the same class. Contrastive loss [11], triplet loss [38], and
generalized end-to-end loss (GE2E) [49] are used in face verification, face clustering, and speaker
verification respectively. In this work, we adapt GE2E to the problem of behavioral stylometry.

Stylometry. Both speaker verification and handwriting recognition are stylometry tasks where
the goal is to detect and analyze authorial style. Stylometry has historically been associated with
attribution studies [45] and has been applied to de-anonymizing programmers from their code [8],
identifying age and gender from blog posts [22], and distinguishing machine-generated text from
human-generated text [5]. It is often framed as a task to determine the similarity between samples or
features extracted from the samples [32]. Handwriting recognition has employed neural methods to
identify individuals for decades [7], and development is ongoing [23, 24]. We introduce the task of
behavioral stylometry, in which the goal is to identify decision-makers from their decisions.

Chess. Chess has a long history in academic research as both a test bed for artificial intelligence [39]
and for understanding human behaviour [1, 6, 9]. Recently, these two goals have begun to merge, as
researchers have begun to create chess engines that behave in a more human-like manner [30, 37].
Recent work presents personalized chess engines based on AlphaZero [40] that are trained to predict
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Figure 1: Overview of our model’s inference procedure. It first takes in a sequence of chess moves
and extracts move-level features with a series of residual blocks, then produces a game vector with a
transformer encoder followed by projection layers and normalization.

moves made by specific players [31]. As a side effect, these models can perform behavioral stylometry
in chess. We develop a methodology that is both more scalable and more accurate than this approach.

Few-shot learning. We approach behavioral stylometry as a few-shot learning task with tens to
hundreds of samples per class, which is a well-studied problem formulation [18, 19, 51]. Transfer
learning is a main approach to few-shot learning, where models are first trained on a large dataset
and then specialized to several smaller datasets [16, 33, 43, 53]. Embedding learning [26] is another
approach, where an embedding space is constructed so that similar training samples are close together
and different samples are further apart. Test samples can then be mapped to this space and compared
with the closest training samples and their associated classes. Several architectures have been
proposed, such as matching networks [4, 10, 48] and prototypical networks [36, 41]. Finally, meta-
learning [2, 44] is another popular approach, which uses a two-level learning process to train a model
across similar tasks and adapts it to solve new tasks with a small number of training samples [20, 35].

3 Methodology

We begin by describing our model design for performing behavioral stylometry in chess. The model
has three main components: the first extracts features from individual moves, the second aggregates
information from the move level to the game level, and the third aggregates information from the
game level to the player level. Given a chess position as input, the first step uses residual blocks
to extract move-level features. Then in the second step, we aggregate move-level features into a
game-level vector using a transformer-based method. Finally, the third step aggregates a player’s
game vectors by calculating their centroid, producing a player vector that represents the player’s
individual playing style.

Move-level feature extraction. To extract features from chess boards and moves, we draw upon
previous work (AlphaZero and Maia) and use a series of residual blocks. The input to the model
is encoded as a 34-channel 8× 8 chess move representation; we represent a move with two board
positions, corresponding to the boards before and after the player’s move. The first 24 channels each
encode a specific type of chess piece (6 for each side in one position, and we encode two positions),
and the next 10 channels encode position metadata relevant to chess such as repetition, castling rights,
the active player’s side, 50-move-rule count, and border information. The output is a 320-dimensional
feature vector that characterizes each move. Each residual block consists of convolutional layers,
batch normalization, ReLU activations, and squeeze-and-excitation (SE) blocks [25]. On top of the
residual blocks we add global average pooling, which summarizes the output from residual blocks
into a 1× 1× 320 feature map, which we flatten into a 320-dimensional vector. The hyperparameters
of the model were chosen to match the Maia architecture: 6 residual blocks with channel size of 64
and a reduction ratio for SE blocks of 8.

3



Aggregating information to the game level. The next component of the model takes in a sequence
of move features extracted from the first component and constructs a game representation. The input
features correspond to the moves played by the target player in a particular game. The output is a
game vector that aggregates information about the move features. Although previous work used an
LSTM to perform the analogous task in speaker verification, our experimentation revealed that a
transformer [47] worked better for our task. Hence, in our approach we use a modified version of the
Vision Transformer (ViT) [17], which was originally proposed as a pure transformer replacement for
CNNs in vision tasks, achieving comparable results to state-of-the-art CNN architectures with fewer
computational resources. As we consider chess moves as 8 × 8 images with 34 channels, we can
adapt ViT to fit in our setting.

To do this, we first modified the input to ViT to take in a sequence of move features, instead of
fixed-size patches extracted from an image. Both BERT [15] and ViT append a classification token to
the input sequence, and the final hidden state of this token is considered as a representation of the
entire sequence. However, in our task we achieve better performance if we directly average the output
vectors of transformer blocks, so we remove the classification token in the input. As all move features
are fed into the transformer simultaneously, we retain the ordering of the chess moves by adding
a positional encoding to each move feature. The original ViT architecture includes a learnable 1D
position embedding in the input sequence, but it cannot easily accommodate variable length inputs
during training. Therefore, we use sine and cosine functions to encode positions, a method proposed
in the standard transformer, and we include support for encoding up to 500 chess moves.

As an overview of our model, each 320-dimensional input move feature vector is first projected into
1024 dimensions, and a positional encoding is appended to the resulting vectors before they are fed
into the transformer encoder. The encoder has 12 transformer blocks, each composed of an attention
layer followed by a feed-forward layer, with layer normalization [3] applied before each layer. There
are 8 attention heads, each with 64 dimensions, in each attention layer. The feed-forward layer uses
MLP with two layers to project the 1024-dimensional vector into 2048 dimensions, where GELU
activation is applied, and then another layer projects it back to 1024 dimensions. Each output vector
of the encoder corresponds to an input move feature, and we average these vectors to get a single
vector of dimension 1024, which is finally projected with MLP into our final embedding space. This
512-dimensional embedding vector encodes the decisions the player made in the game. At inference
time, the player vector is obtained by simply averaging all the game vectors (i.e. the centroid) that
belong to the player.

Loss Function. In order to capture individual playing style, we adapt Generalized End-to-End Loss
for Speaker Verification (GE2E) [49] to our setting, which allows us to train the game vectors to
maximize both intra-player compactness and inter-player discrepancy in the resulting embedding
space. GE2E builds a similarity matrix on a batch of N × M games, where N is the number of
players and M is the number of games per player. For each game from each player, we extract
the current 512-dimensional embedding vector yji (i-th game from the j-th player) output by the
residual blocks and transformer network. We also find the centroid vector cj of a specific target
player by averaging all of their game vectors in the batch. However, we remove yji when computing
the centroid of the true player as suggested in [49], to help avoid trivial solutions.

We then construct a similarity matrix Sji,k containing the cosine similarities between each
game embedding vector and each player centroid (for all players in the batch), which we fur-
ther scale by two learned parameters w and b. For the target player, we calculate the centroid
c
(−i)
j = 1

M−1

∑M
m̸=i yjm, and otherwise simply use the average of game vectors for all other

players (k ̸= j).

Sji,k =

{
w · cos(yji, c

(−i)
j ) + b if k = j;

w · cos(yji, ck) + b otherwise.
(1)

The final loss function is designed to maximize the similarity for the correct entries, while pe-
nalizing all other entries in the similarity matrix. As a result, the loss function L(yji) =

−Sji,j + log
∑N

k=1 exp(Sji,k) pushes each embedding vector closer towards the player’s centroid
and further from all other players’ centroids simultaneously.
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Figure 2: A schematic depiction of how players are organized in a behavioral stylometry task; how
each player’s games are organized into training, query, and reference sets; and how each game’s
moves are in a sequential order.

Training procedure. We randomly sample N ×M games as a batch, where N = 40 is number of
players and M = 20 is number of games per player. In order to speed up training and perform batch
computing, we randomly sample a 32-move sequence from each game and pad 0s to games with
length less than 32 moves. The entire model was trained with 4 Tesla K80 GPUs and SGD optimizer
with an initial learning rate of 0.01 and momentum of 0.9. The learning rate was reduced by half every
40K steps. Initial values of w and b for the similarity matrix were chosen to be (w, b) = (10,−5),
and we used a smaller gradient scale of 0.01 to match the original GE2E model.

4 Evaluation

We now train a model using our methodology and evaluate it against competitive baselines on several
behavioral stylometry tasks.

4.1 Data

Lichess. We use chess games downloaded from Lichess, a popular open-source chess platform.
Their game database contains over two billion games played by players ranging from beginners to
the current world champion, Magnus Carlsen. From this database, we collect rated Blitz games
(3–7 minutes per player per game) played on Lichess between January 2013 and December 2020 by
players who match all of the following criteria: active as of December 2020, mean rating between
1000–2000, low variance in Blitz rating, and at least 1,000 games played during the time interval. We
also restrict our attention to games with at least 10 moves (20 ply). To investigate whether behavioral
stylometry performance varies with number of games played, we bucket the players according to how
many games they have played: 1K–5K, 5K–10K, 10K–20K, 20K–30K, 30K–40K, and 40K+ (buckets
are hereafter referred to by the minimum of their respective range, e.g. “20K” for the 20K–30K
bucket). The union of these sets constitutes our universe of players U .

Players are further divided into seen and unseen sets, using the same players as our previous work
for those with more than 10K games played [31]. Players are seen if their games are used in model
training and unseen if not. Finally, each player’s games are randomly split into training games (80%
of their games), reference games (10%) , and query games (10%). Training games are only used for
model training (and thus only seen players’ training games are used); reference games are what is
known about each candidate player; and query games are what is given about an unknown target
player we are attempting to identify. In all of our evaluations, we only use 100 games per player for
both the reference and query sets, although in principle they could vary, and for each player their
reference and query sets are non-overlapping: xr ∩ xq = ∅. The numbers of players and games in
each player set is shown in Table 1.
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Dataset 1K 5K 10K 20K 30K 40K+ Ranked

Seen Players 8,617 5,298 1,866 295 86 19 1,813
Seen Players’ Games 14M 24M 17M 4.9M 2.0M 0.7M 9.5M
Unseen Players 23,101 1,324 466 72 20 20 451
Unseen Players’ Games 4.6M 264.8K 93.2K 14.4K 4K 4K 90.2K

Table 1: The numbers of players and games used in training (seen) and evaluation (unseen).

High-ranking players. We also assembled a dataset of high-ranking online players from both Lichess
and Chess.com, the two most popular online chess platforms. To do so, we took the lists of the top
1,500 players on both sites’ leaderboards, downloaded all of their games, and filtered out games with
fewer than 10 moves and players with fewer than 950 games. We split the remaining high-ranking
players into seen (80%) and unseen (20%) sets, and their counts are shown in Table 1 (again, we
use only 100 reference and 100 query games per player in our evaluations). Note that these games
include all time controls and tend towards quicker games than the general population. These sets
include many of the best players in the world, including the world champion.

4.2 Experimental Setup

Task formulation. Our central evaluation task is performing behavioral stylometry in chess, in which
we are given a set of query games played by a particular player, and the task is to identify them from
amongst a pool of candidate players C, each of whom is associated with a set of reference games.

Formally, we set this up as a few-shot classification task. Within our universe of players U , we
have an evaluation pool E ⊆ U of players we are trying to identify, and a candidate pool C ⊆ U
of players which they are guaranteed to belong to (E ⊆ C). Every target player in E is associated
with a small set of query games xq , and every candidate player in C is associated with a small set of
reference games xr (the conceptual organization of players, games, and moves is shown in Figure 2).
In general, the candidate pool C can be much larger than the evaluation pool E—for example, one
possible task would be to try to identify some set of |E| = 10 unknown players, but we are only
promised that they are members of some much larger pool of |C| = 10, 000 players. Finally, we also
specify a task parameter k where all games, both query and reference games, only contain moves
starting at move k. As we will see, the opening moves in chess can be highly discriminative because
many players repeatedly play the same openings. For k = 0 we are given entire games, but for, e.g.,
k = 15, we are only given moves 15 and beyond for each game. The behavioral stylometry task is
thus fully specified by C, E, |xr|, |xq|, and k: for each player in E we are given |xq| query games
and for each player in C we are given |xr| reference games, all starting at move k. For each set of
query games xq we seek to identify which player in C played them.

Openings baseline. Chess games always start from the same initial position, and the opening moves
are heavily studied and well-understood. Opening choice shapes the resulting game, and players often
study a small set of openings in depth and stick to them. As a result, the opening moves are likely
to contain a lot of information about who is playing the game, albeit for the somewhat unsatisfying
reason that they are memorized patterns of play rather than new decisions being made. Indeed, when
strong anonymous accounts play on online platforms, informed observers often rely on their opening
moves to guess who they are. As a strong baseline for comparison, we create an embedding model
that uses the opening moves. The model creates game vectors by sampling 5 sequential moves by the
target player, converts each into a one-hot 4096-dimensional encoding vector (moves that are never
used will be 0 for all vectors and do not affect our distance measurements), and adds them together to
yield a 5-hot vector encoding of the 5 opening moves. Doing this process for each of the xq games in
the target player’s set of unlabeled games yields xq 5-hot vectors in a 4096-dimensional space, which
we then convert into a player vector by simply taking their centroid. These player vectors can then be
used in the same manner as those in our main model to perform behavioral stylometry.

Our model. We apply our methodology to the behavioral stylometry task. To construct our main
model, we trained on all training games by all players in the seen universe—63.7M games by 16,181
players in total. Our model learns player vectors in an embedding space that captures chess style,
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into which new, unseen players can be encoded. To perform few-shot stylometry on an unseen player
p for some candidate pool C, we first infer player representations from the reference set of each
player in C, then infer p’s representation by running the model on p’s query set. We then compute the
cosine distance between p’s query representation and all candidate players’ reference representations
and return the closest candidate player as p’s identity. In all of our evaluations, the reference sets
are drawn from players’ 10% validation sets and the query sets are drawn from players’ 10% testing
sets. We report Precision at 1 (P@1) unless otherwise noted. We also trained two additional models,
one on high-ranking players and one on the set of players used in our prior work [31], which are
discussed in the Supplement.

4.3 Behavioral Stylometry

Stylometry performance. Our main evaluation is the behavioral stylometry task where C =
10K∪20K∪30K∪40K+ (all 2,844 Lichess players with at least 10,000 games played, both seen and
unseen, are possible identities); E = 10K+ (the 578 unseen Lichess players with 10K–40K+ games
are the target players to be identified); |xq| = |xs| = 100 (reference and query sets are 100 games
each); and k = 15 (we only consider games starting from move 15, so that memorized openings do
not factor into our evaluation of capturing human decision-making style). On this task, our model
achieves a P@1 of 0.86, exactly identifying a player from 100 of their games out of 2,844 possible
candidates 86% of the time (see Table 2 (top)). We emphasize that this is without access to the
opening, which is the most regimented, repeated, and identifiable part of a chess game. In comparison,
the baseline with access to the first 5 given moves of each game (i.e. moves 16–20) only achieves a
P@1 score of 0.234—far better than random guessing, indicating that specific moves indeed capture
a significant amount of information, but far worse than our method. We also tested an alternative
baseline that uses all moves of the game, which performs slightly better than the opening baseline,
but still much worse than our method (P@1 = 0.277, see Supplement for details). In the Supplement,
we also show how performance varies for different choices of the evaluation pool. Both our model
and the baseline are robust to the choice of minimum total number of games per player, indicating
that strong performance on this task is not contingent on players being very active on the platform.

A powerful property of our method is that it adapts to players it has never seen before. We compare
performance on unseen players versus seen players (recall that seen players are those whose training
games were used during model training). The difference in performance between players the model
explicitly trained on and players it has never seen before is surprisingly small. For example, the
model achieves P@1 = 0.86 on unseen players and P@1 = 0.853 on seen players. This suggests
that the model has learned a comprehensive space of decision-making style from the seen players,
and can leverage this to characterize unseen players.

In Table 2 (bottom), we also show the version of the task where the opening moves are given to the
models (k = 0). Our model performance increases to near-perfect accuracy, but the openings baseline
also increases substantially. This indicates that using the opening moves to perform stylometry—
identical moves that players repeat out of memorization—is less interesting than using moves later on
during games, when players are making decisions in instances they (and our models) have not seen
before. Although our model is still significantly better than the openings baseline in this formulation
of the task, we use k = 15 for the rest of our analyses.

To gauge whether our performance relies on discriminating between player skill levels, we show
a variation of behavioral stylometry limited to subsets of players with similar ratings. Restricting
our attention to players with ratings within a narrow range around 1900 yields P@1 = 92.6% (see
Supplement Table 7 for full details).

Comparison with personalized move-matching models. The previous state-of-the-art performance
for chess player stylometry was achieved by training individual move-matching models for every
player in C [31]. This requires thousands of labeled games per player, and is only computationally
feasible for small |C|, hence we are unable to include this method in our main analyses due to its
lack of scalability. However, we directly compare our method on the small, 400-player candidate
pool tested in [31]. For this comparison, the evaluation and candidate pools are both 400 players,
k = 15, and |xq| = |xr| = 100. The results are shown in Table 3(top), where personalized models
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Evaluation Pool (E) |E| |C| k Random Baseline Our Model

10k+ Lichess (unseen) 578 2844 15 0.0004 0.244 0.860
10k+ Lichess (seen) 2266 2844 15 0.0004 0.274 0.853
10k+ Lichess (all) 2844 2844 15 0.0004 0.268 0.854
10k+ Lichess (unseen) 578 2844 0 0.0004 0.929 0.979
10k+ Lichess (seen) 2266 2844 0 0.0004 0.930 0.982
10k+ Lichess (all) 2844 2844 0 0.0004 0.929 0.982

Table 2: Behavioral stylometry performance on Lichess players with all games starting at move
k = 15 (top) or k = 0 (bottom). The candidate pool is the entire set of Lichess players with over 10K
games, and the evaluation pool consists of all players that were seen, unseen, or both. Each players’
reference and query sets consisted of 100 games each.

Task |E| |C| Baseline Personalized Our Model

McIlroy-Young et al. 400 400 0.478 0.552 0.953
High-ranked players 408 2157 0.039 — 0.308
" ∪ 10K–40K+ in C 408 5001 0.027 — 0.301

Table 3: (Top) Comparison with personalized move-prediction models in [31] with k = 15. (Bottom)
Performance on high-ranked players, either with high-ranked players only in the candidate pool or
high-ranked players and Lichess amateurs together, with k = 15 and |xq| = |xr| = 100.

achieve P@1 of 0.552. However, our model achieves P@1 of 0.953, far outstripping the previous
method’s performance.

High-ranking players. To examine how our model performs on out-of-distribution examples, we
evaluated its performance on our set of high-ranking players (Section 4.1). These players are not
only unseen by the model, but they are of much higher skill than any of the players it was trained on,
and half of them are drawn from a separate online platform. We begin with the task of identifying
the 408 unseen high-ranked players out of the complete set of both seen and unseen high-ranked
players (Table 3 (bottom)). This task is significantly more difficult: both the baseline and our model
have lower P@1 scores. However, our model still outperforms the baseline by almost a factor of
10. Interestingly, when the set of Lichess amateurs is added to the candidate pool C, the model
performance hardly changes at all, indicating that high-ranked players occupy a different part of the
embedding space.

Reference and query set sizes. We studied how model performance varies with |xr| and |xq|. As
Figure 3a shows, model performance rises sharply for earlier values and starts to saturate around
|xr| = |xq| = 50 games. Even when given a small set of labeled examples, i.e., |xr| = 10, our model
performs reasonably well. In comparison, personalized move-prediction models require thousands of
games to begin seeing improvements over unpersonalized models [31].

Expanded dataset. We examined the model’s performance on our complete dataset (1K to 40K+),
where all 41,184 players are used in both the candidate pool and evaluation pool. Even in this
extensive regime, our model achieves a P@1 of 0.54, while the baseline model achieves P@1 of
0.0849 (see Supplement for details).

4.4 Qualitative Analysis

Attention. Our use of attention allows us to examine which sections of the game are most useful for
identifying individual style. Figure 3b shows the average per-move attention for the main model when
applied to 100 games for each player in the 40K+ set. Four different starting moves were examined
(k = 0, 5, 10, 15) to show how the models handle being given incomplete games. The earlier parts of
the game are most informative, with a monotonic decay in attention as games progress.
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Figure 3: (a) Stylometry performance (P@1) as a function of query set size (xq) and reference set
size (xr). (b) Distribution of attention across 1,900 games (40K+ seen players) from 4 different
starting moves (k). Confidence intervals represent 1 standard deviation. (c) Two-dimensional t-SNE
projection of high-ranked game vectors generated from games starting at move k = 15, colored by
White’s first move.

Playing style. Figure 3c shows three different colorings of a 2D t-SNE projection of the high-skill
players. The colorings are based on the preferred opening moves of the players, when playing as
White (see Supplement, Figure 7 for the corresponding projection when playing as black). Despite
these player vectors being learned from games starting on move k = 15, where the opening moves
were discarded, the resulting player embeddings are tightly related to their opening preferences. This
indicates that the space is aligned with the stylistic preferences of players.

5 Ethical Considerations

As this work pursues the identification of individuals from behavioral traces, it raises important ethical
questions. In principle, although our main goal is to specialize behavioral models in the service of
more human-compatible AI, the methodology we present and others like it could be abused by bad
actors. The most salient concerns revolve around user privacy, as sufficiently powerful stylometry
methods could be used to deanonymize individuals. We now discuss these issues in detail, as well as
comment on our choice of domain and possible generalization to other domains.

Privacy concerns. Our methods can be used to accurately identify people from limited behavioral
traces. This raises significant privacy concerns, as well as concerns about power differentials
and inequality, since those who are marginalized in society often benefit most from anonymized
communication and behavior. The relatively small amount of data required to identify an individual
with a high degree of accuracy, at least in the context of chess, would likely surprise those who wish
to remain anonymous. Engaged players often have several accounts (either on the same online server
or across multiple platforms), and our embedding methodology could be used to link them together.
This could be problematic if a player intended to keep an anonymous account separate from a main
account, potentially concealing ideas they are experimenting with or details about when they are
active online. Similar concerns are also present in the contexts of speech recognition, the domain we
adapted our methodology from, and author identification in text, a subfield with a long history.

The history of author identification also makes clear that people have an interest in developing
countermeasures to being identified (and again, especially those with limited power). Our work
contains insights that can offer help to those seeking such countermeasures in our chosen domain of
chess. Consider again a player with multiple accounts. We find that if their accounts were to differ
non-trivially in their opening repertoire, this would reduce our model’s accuracy in identifying them
as the same individual, since we find that the opening phase of the game is the most revealing part.
To illustrate, if we divide the games played as White by a single player into two sets, depending on
whether they started with the opening move e4 or d4, the resulting set centroids are on average as
distant from each other (cosine distance 0.27) as they are from other players’ centroids. Of course,
any such solution is far from ideal since it requires people to put effort into avoiding identification.
But the framework we develop may be able to continue providing further insight into the design of
countermeasures to identification requiring limited effort or adaptation from individuals.
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Our methods could possibly reveal other information about players through the embedding represen-
tations we learn. We do not examine if characteristics such as gender or nationality are correlated
with the embedding representations, since the public dataset we use contains no such personally
identifiable information, but other machine learning representations have been found to unwittingly
incorporate private characteristics [12].

Domain and generalization. We chose chess as a first domain to study since it is relatively benign
compared to other possible contexts such as human speech, driving behavior, and cellphone mobility
data. Having one’s chess behavior connected with one’s identity, while not always harmless, is
arguably less serious than in other domains. It is not a priori clear, in any domain, how uniquely
identifying particular forms of behavioral data will be; but it is crucial to understand this since it
is easy to build individual-level classifiers from public data of this form, and individuals may act
with an expectation that they will remain anonymous, without knowing how revealing their data is.
Moreover, there is a quantitative dimension to this—it is not simply all-or-nothing, but a question of
how accurately these determinations can be made as a function of the data available. Only through a
careful analysis of stylometry can we determine the level of risk in any given domain, and as such it
is an important part of making people aware of privacy risks. Our work is following this principle
in illuminating the power of stylometry from behavioral traces. By deliberately investigating and
quantifying these risks in the domain of chess, we can begin to develop this understanding before
something similar is attempted in higher-stakes domains.

The above is particularly important since our methodology can be applied to other potentially more
concerning domains. The framework of mapping sequences of decisions into a vector space, and
then using an appropriate stylometry loss function, is not unique to chess. We hope that the research
community continues to develop both the methodological and ethical frameworks necessary to ensure
behavioral stylometry techniques enhance human-AI compatibility and collaboration.

6 Conclusion

Motivated by the goal of algorithmically characterizing human behavior, we propose a method
for performing behavioral stylometry—identifying people down to the level of specific individuals
from their patterns of decisions—and demonstrate the effectiveness of these methods in the domain
of chess. We adapt techniques developed for speaker verification tasks to this decision-making
setting, and construct a neural network architecture that can reliably identify individual-level decision-
making style. Our architecture uses residual blocks to extract position- and move-level features,
then combines these with a position encoding and inputs them to a modified Vision Transformer
that learns how to accurately aggregate this information into a game-level representation. We use
a GE2E loss framework to maximize both intra-player compactness and inter-player discrepancy
in the resulting embedding space. The final model is then capable of performing highly accurate
few-shot classification of unseen players, outperforming both the previous state of the art and a
competitive opening baseline. The resulting embedding space generalizes in several ways—it can
identify high-ranked players even though it was only trained on amateurs, it identifies unseen players
equally well as players it was trained on, and maintains its strong performance when expanded to
tens of thousands of players.

Our methodology has several limitations that raise natural questions for future work. First, while our
methodology far outperforms the baseline on high-ranking players, the lower accuracy suggests there
is room for improvement in capturing top-class, complex styles. Second, our methodology is geared
towards identifying individuals from their behavior alone, which could lead to privacy concerns.
While this critique pertains to any stylometry task, including hand-writing recognition and speaker
verification, our work raises similar questions in behavioral domains. Future work could investigate
whether the benefits of methodologies capable of stylometry could be achieved without the privacy
risks of uniquely identifying people. Finally, our methodology could be extended to other behavioral
domains where fruitful human-AI collaboration is on the horizon.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss them in the Conclu-

sion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss

the privacy risks in the Conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Our supplement
contains the code, the model files are too large for the supplement so will be released
when the paper goes public

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We have data and methods sections discussing this along with
more information in the supplement

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We ran over thousands of players to get error estimates,
but did not train or test multiple times

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Our methods and supplement
discuss this

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our code release

links to the code we build on
(b) Did you mention the license of the assets? [Yes] The code we are using is GPL or MIT

licensed and is mentioned in the code release
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We plan to release the code and models after publication
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We discuss this in the Data section, all data used is public and
not sensitive

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We discuss this in the Data section, there is no
PII in our data
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Figure 4: Validation loss when using a 10-move window versus a 32-move window during model
training.

7 Supplement

This supplement includes additional details about the models discussed in the main text and their
stylometry performance, comparisons against other models we trained (e.g., on smaller subsets of the
data), and a summary of the artifacts we are releasing.

7.1 Training Data Parameters

Move window. As mentioned in our methodology (Section 3), we randomly sample a 32-move
sequence from each game to speed up the training process. In a given training iteration, this sequence
is comprised of moves from one game of one player, but different parts of the game may be sampled
during different training iterations. In our earlier experiments, we used a 10-move window since this
required no zero-padding to be added to the games (all games have at least 10 moves). However, we
later observed a benefit from using longer sequences of the input, even though some games have
fewer than 32 moves and require zero-padding. This comparison is shown in Figure 4.

Starting move. The models discussed in the main text are trained on any 32-move window from each
game. During inference time, we distinguished between the easier task of using the opening moves to
perform stylometry (starting at move k = 0) versus the harder task of using moves later on during
the games (e.g., starting at move k = 15), when players are making decisions in instances they (and
our models) have not seen before. However, this leaves the question of how opening moves impact
training unanswered. To investigate this, we additionally train a model using 32-move windows that
only start at move 15 or later. The stylometry accuracy of this model is 0.390 on a candidate pool
|C| = 232 and evaluation pool |E| = 232. When evaluated on the same exact task, our main model
(which does include the opening moves in its training data) achieves a significantly higher accuracy
of 0.9927. This reveals that information about the opening moves is quite important during model
training: our main model likely draws on this information when evaluated on later moves, whereas
the model trained only on moves 15 or later does not have access to such information directly.

7.2 Model Architecture Variants

LSTM vs Transformer. In our initial experiments, we used the same LSTM network that was used
in the original GE2E work [49]. We subsequently observed a small performance gain when using
a Bi-directional LSTM. This is likely due to the transformer being better able to focus on the early
game as show in figure 3b. Figure 5 shows that a Transformer model consistently outperforms a
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Figure 5: Validation loss of a Bi-directional LSTM compared to the Transformer model.
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Figure 6: Validation loss when using a 512 vs. 128-dimension embedding.

Bidirectional LSTM throughout the training process. Table 6 also shows the LSTM’s accuracy when
fully trained.

ArcFace vs GE2E. As we discussed in related work (Section 2), there are two families of loss
functions that are most relevant to our behavioral stylometry task: ArcFace [14] and GE2E [49].
During our investigation, we experimented with one loss function from each of these families.
However, holding everything else constant, we observed that ArcFace consistently failed to converge
in the settings we evaluated.

Embedding size. The embedding size is also an important hyperparameter that we explored. We
experimented with both a 128 and 512-dimensional embedding, as shown in Figure 6. Even though
the two models perform similarly during the first 10K training steps, the validation loss for the 512-
dimensional model continues to drop beyond that point, while the 128-dimensional model roughly
stays the same (Figure 6). All of our models thus use an embedding size of 512.

7.3 Number of Games Played

We can partition the players by the number of games they have played to match the partitioning used
by [31]. Table 4 shows the accuracy of our main model as we vary the evaluation pool of the number
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Evaluation Pool (E) |E| |C| Random Baseline Our Model

10k – 40k+ 578 2844 0.0004 0.244 0.860
20k – 40k+ 112 2844 0.0004 0.286 0.848
30k – 40k+ 40 2844 0.0004 0.325 0.875
40k+ 20 2844 0.0004 0.300 0.900

Table 4: Model accuracy on different sets of Lichess players based on number of games played. Each
model is given games starting from the 15th move to create game vectors. The candidate pool is the
entire set of Lichess players with over 10K games in our dataset; 100 games from each player’s test
set is used for both the reference and query sets of each player.

Evaluation Pool (E) k |E| |C| Baseline Our Model

5k – 40k+ 15 9465 9465 0.171 0.737
1k – 40k+ 15 41184 41184 0.0849 0.540

Table 5: Comparison of baseline and our model on a large dataset of players. Candidate and evaluation
pool are the same set and include players from the seen and unseen sets, all games are from the test
set. 100 games were used for query and reference sets.

of games played, and use the corresponding set of players in each candidate pool. The full set of seen
and unseen players is used for this analysis, but as in the main paper, the testing sets for all players
are used for the evaluation

7.4 Expanded Dataset Results

The most important results for the large data set are covered in Section 4.3, but we also ran other tests
that are summarized in Table 5.

The results for the baseline and our models on the task of identifying players from a large set can be
broken down by the player’s category. This task is constructed the same way as in the main paper with
k = 15. Looking at players with 5K or greater games, the baseline achieves 0.171 accuracy while
our model achieves 0.737 accuracy. The evaluation and candidate pools are both the same (of size
9465) since we use all players. When we look at the largest possible set of Lichess players—those
with at least 1K games—we see 0.0849 accuracy for the baseline and 0.540 for our model.

7.5 Alternative Models Comparison

Table 6 shows the accuracy of an alternative baseline model which uses all positions instead of a 5
move window and an LSTM model. The LSTM model uses an LSTM instead of a transformer for
the variable input length, and was trained on the same data as the main model. The all moves model
while slightly better has higher overhead so for the 41k players test (section 4.3) was infeasible.

7.6 Accuracy on Rating Subsets

Table 7 shows the accuracy on sets of players with different ratings. Note that the rating is the
minimum and the buckets are of width 100, e.g 1100 refers to players rated [1100, 1200).
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Evaluation Pool (E) |E| |C| k Random All Moves LSTM Transformer (Final Model)

10k – 40k+ 578 2844 15 0.0004 0.2768 0.7803 0.8599
20k – 40k+ 112 2844 15 0.0004 0.3750 0.8036 0.8482
30k – 40k+ 40 2844 15 0.0004 0.4500 0.8750 0.8750
40k+ 20 2844 15 0.0004 0.4500 0.9000 0.9000

Table 6: Comparison of alt.ernative models not discussed in the main text

k |E| |C| Rating Model Accuracy

15 19 19 1100 1.000
15 36 36 1200 0.972
15 54 54 1300 0.926
15 106 106 1400 0.981
15 162 162 1500 0.988
15 297 297 1600 0.976
15 340 340 1700 0.968
15 487 487 1800 0.926
15 522 522 1900 0.925

Table 7: Accuracy on sets of players with different ratings. 1100 means players in [1100, 1200), 1200
players in [1200, 1300), . . . .

7.7 Training on Other Players

In the main text, we train our model on a large set of amateurs on Lichess (Section 4.2). Here,
we report on two additional experiments in which we train on a separate set of interesting players.
In the first, we train our model only on the 400 players used in [31]. This is an experiment with
training on orders of magnitude fewer players, and also facilitates a direct comparison with previous
work (and our main model’s performance on the 400 players from previous work). In the second,
we train on strong, high-ranking players from both Lichess and Chess.com, the two largest online
chess platforms. This is also a smaller training set, and helps us understand whether our training
methodology generalizes to high-level players. Both models performed worse on their respective
tasks than our main model due to the small training set size, and are included here for comparison
and completeness.
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Evaluation |E| |C| Baseline Our High 400
Task Pool Model Model Model Model

10k – 40k+ all 15 2844 2844 0.268 0.854 0.202 0.515
10k – 40k+ seen 15 2266 2844 0.274 0.853 0.204 0.520
10k – 40k+ unseen 15 578 2844 0.244 0.860 0.195 0.497
20k – 40k+ seen 15 400 2844 0.355 0.870 0.216 0.573
20k – 40k+ unseen 15 112 2844 0.286 0.848 0.273 0.607
30k – 40k+ seen 15 105 2844 0.457 0.886 0.258 0.590
30k – 40k+ unseen 15 40 2844 0.325 0.875 0.282 0.725
40k+ seen 15 19 2844 0.368 0.895 0.294 0.737
40k+ unseen 15 20 2844 0.300 0.900 0.263 0.700

High-ranked ∪ 10K–40K+ all 15 4911 4911 0.158 0.595 0.136 0.325
High-ranked ∪ 10K–40K+ seen 15 3925 4911 0.160 0.590 0.137 0.327
High-ranked ∪ 10K–40K+ unseen 15 986 4911 0.151 0.614 0.130 0.318
High-ranked, high only C seen 15 1659 2157 0.026 0.273 0.107 0.108
High-ranked, high only C unseen 15 408 2157 0.039 0.308 0.106 0.118
High-ranked seen 15 1659 4911 0.019 0.265 0.080 0.097
High-ranked unseen 15 408 4911 0.027 0.301 0.081 0.108
McIlroy-Young et al. seen 15 400 400 0.477 0.953 0.480 0.825

Table 8: Behavioral stylometry performance on Lichess and high-ranked players with all games
starting at move k = 15. The candidate pool is the entire set of Lichess players with over 10K
games on the top, and various other combinations as noted on the bottom. The evaluation pool is as
described with players in either seen set, unseen set, or both (“all”). 100 games were used for both
reference and query sets of each player.

Evaluation |E| |C| Baseline Our High 400
Task Pool Model Model Model Model

10k – 40k+ all 0 2844 2844 0.930 0.982 0.455 0.810
10k – 40k+ seen 0 2266 2844 0.930 0.982 0.464 0.815
10k – 40k+ unseen 0 578 2844 0.929 0.979 0.419 0.791
20k – 40k+ seen 0 400 2844 0.948 0.988 0.497 0.890
20k – 40k+ unseen 0 112 2844 0.893 1.000 0.446 0.812
30k – 40k+ seen 0 105 2844 0.933 1.000 0.533 0.924
30k – 40k+ unseen 0 40 2844 0.850 1.000 0.475 0.850
40k+ seen 0 19 2844 0.947 1.000 0.684 1.000
40k+ unseen 0 20 2844 0.900 1.000 0.500 0.900

High-ranked ∪ 10K–40K+ all 0 4911 4911 0.789 0.799 0.345 0.557
High-ranked ∪ 10K–40K+ seen 0 3925 4911 0.785 0.800 0.347 0.558
High-ranked ∪ 10K–40K+ unseen 0 986 4911 0.806 0.795 0.338 0.552
High-ranked, high only C seen 0 1659 2157 0.614 0.569 0.283 0.259
High-ranked, high only C unseen 0 408 2157 0.651 0.554 0.295 0.278
High-ranked seen 0 1659 4911 0.605 0.565 0.243 0.244
High-ranked unseen 0 408 4911 0.649 0.549 0.263 0.266
McIlroy-Young et al. seen 0 400 400 0.990 0.995 0.740 0.973

Table 9: Behavioral stylometry performance on Lichess and high ranked players with all games
starting at move k = 0. The candidate pool is the entire set of Lichess players with over 10K games
on the top, and various other combinations as noted on the bottom. The evaluation pool is as described
with players in either unseen set, seen set, or both (“all”). 100 games were used for both reference
and query sets of each player.
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Figure 7: Two-dimension t-SNE projection of high-ranked player vectors generated from games
starting at move k = 15.

7.8 Additional Embedding visualizations

Figure 7 shows the same embedding layout as figure 3c but colored by the moves made in response
to white’s first move.

7.8.1 400 Player Model

We train a 400-player model on the same 400 players that [31] uses for its stylometery analysis. In
contrast with the main model, which uses 16,000 players for training, this one is drastically reduced
to 400 players.

The results for this model are shown in the 400 column of Tables 8 and 9. The main comparison
task for this model is the McIlroy-Young et al. dataset which is the same set of players (but not
games) it was trained on. It outperforms the baseline on the k = 15 tasks (Table 8), but not on the
k = 0 tasks (Table (table 9)). Additionally, it does not generalize well and performs badly on the
high-ranked players task. These results suggest that more than 400 players are needed to learn the
space of chess-playing style.

7.8.2 High-Ranking Player Model

We also trained a high-ranking player model with the 1,813 high-ranked training players. Having a
model that performs well on high-skill players is of interest to the chess community. While our final
model presented in the main text performs well above the baseline, we were interested in evaluating
whether directly training on high-skill players would perform even better.

The results are shown in the “High” column of Tables 8 and 9. Similarly to the 400 model, it
under-performs our final model by a large margin. Notably, the model explicitly trained on high-
ranked players performs worse than our main model on the high-ranked players task, suggesting that
high-ranked players are a harder set to learn from. This is consistent with our observation that they
are harder to distinguish.
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7.9 Artifacts for Release

7.9.1 Code

Our public code release can be found at github.com/CSSLab/behavioral-stylometry. As
there are ethical concerns regarding releasing the model and full training code it may not be publicly
accessible. You can contact our corresponding author at: reidmcy@cs.toronto.edu to request
access.

We incorporate three pieces of open source code in ways that are not trivially separated from our
own code. One is GPL licensed and handles the board representations, the second and third are MIT
licensed. One provides help with the transformer implementation and the other is for the training
pipeline. All are noted in this code release.

7.9.2 Data

The data used for training are all from the Lichess database which is free and released under a Creative
Commons CC0 license. The code for processing and analysis is included with the code release.

7.9.3 Interactive embedding viewer

We used Embedding Projector to view the embedding vectors. Instructions on how to view it can be
found with our code release at github.com/CSSLab/behavioral-stylometry
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