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ABSTRACT

Datacenter networks should support high network utilization. Yet
today’s routing is typically load agnostic, so large flows can starve
other flows if routed through overutilized links. Even recent pro-
posals like centralized scheduling or end-host multi-pathing give
suboptimal throughput, and they suffer from poor scalability and
other limitations.

We present a simple, switch-local algorithm called LocalFlow
that is optimal (under standard assumptions), scalable, and practi-
cal. Although LocalFlow may split an individual flow (this is nec-
essary for optimality), it does so infrequently by considering the
aggregate flow per destination and allowing slack in distributing
this flow. We use an optimization decomposition to prove Local-
Flow’s optimality when combined with unmodified end hosts’ TCP.
Splitting flows presents several new technical challenges that must
be overcome in order to interact efficiently with TCP and work on
emerging standards for programmable, commodity switches.

Since LocalFlow acts independently on each switch, it is highly
scalable, adapts quickly to dynamic workloads, and admits flexible
deployment strategies. We present detailed packet-level simula-
tions comparing LocalFlow to a variety of alternative schemes, on
real datacenter workloads.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols

Keywords

Flow routing; Datacenter networks; Local algorithms; Optimiza-
tion decomposition

1. INTRODUCTION

The growth of popular Internet services and cloud-based plat-
forms has spurred the construction of large-scale datacenters con-
taining (hundreds of) thousands of servers, leading to a rash of re-
search proposals for new datacenter networking architectures. Many
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such architectures (e.g., [1, 20]) are based on Clos topologies [13];
they primarily focus on increasing bisection bandwidth, or the com-
munication capacity between any bisection of the end hosts. Unfor-
tunately, even with full bisection bandwidth, the utilization of the
core network suffers when large flows are routed poorly, as colli-
sions with other flows can limit their throughput even while other,
less utilized paths are available (see Figure 2).

The problem of simultaneously routing flows through a capac-
itated network is the multi-commodity flow (MCF) problem. This
problem has been studied extensively by both the theoretical and
networking systems communities. Solutions deployed in datacen-
ters today are typically load agnostic, however, such as Equal-Cost
Multi-Path (ECMP) [23] and Valiant Load Balancing (VLB) [42].
More recently, the networking community has proposed a series of
load-aware solutions including both centralized solutions (e.g., [2,
71), where routing decisions are made by a global scheduler, and
distributed solutions, where routing decisions are made by end hosts
(e.g., [26, 43]) or switches (e.g., [27]).

As we discuss in §2, these approaches have limitations. Central-
ized solutions like Hedera [2] face serious scalability challenges
with today’s datacenter workloads [6, 28]. End-host solutions like
MPTCP [43] offer greater parallelism but cannot predict down-
stream collisions, forcing them to continuously react to congestion.
Switch-local solutions like FLARE [27] scale well but are ill-suited
to datacenters.

Most of the existing solutions do not split flows across multiple
paths, making them necessarily (and significantly) suboptimal [18],
as our evaluation confirms. But splitting flows is problematic in
practice because it causes packet reordering, which in the case of
TCP may lead to throughput collapse [30]. Solutions that do split
flows are either load agnostic [11, 15], suboptimal and compli-
cated [19, 43], or rely on specific traffic patterns [27].

We argue that switch-local solutions hold the best promise for
handling today’s high-scale and dynamic datacenter traffic patterns
optimally. We present LocalFlow, the first practical switch-local al-
gorithm that routes flows optimally in symmetric networks, a prop-
erty we define later. Most proposed datacenter architectures (e.g.,
fat-trees [1, 20, 31]) and real deployments satisfy the symmetry
property. Our optimality proof decomposes the MCF problem into
two components, one of which is essentially solved by end hosts’
TCP, while the other component is solved locally at each switch by
LocalFlow. In fact, a naive scheme called PacketScatter [11, 15],
which essentially round-robins packets over a switch’s outgoing
links, also solves the latter component. However, PacketScatter
is load agnostic: it splits every flow, which causes packet reorder-
ing and increases flow completion times, and it does not handle
network failures well.



Figure 1: A set of flows to the same destination arrives at
switch S. PacketScatter (left) splits every flow, whereas Local-
Flow (right) distributes the aggregate flow, and only splits an
individual flow if the load imbalance exceeds §.

LocalFlow overcomes these limitations with the following in-
sights. By considering the aggregate flow to each destination, rather
than individual transport-level flows, we split at most |L| — 1 flows,
where |L| is the number of candidate outgoing links (typically <12).
By further allowing splitting to be approximate, using a slack pa-
rameter § € [0,1], we split even fewer flows (or possibly none!).
Figure 1 illustrates these ideas. In the limit, setting & = 1 yields
a variant of LocalFlow that schedules flows as indivisible units;
we call this variant LocalFlow-NS (“no split”). Like PacketScatter,
LocalFlow proactively avoids congestion, allowing it to automati-
cally cope with traffic unpredictability. However, by using flexible,
load-aware splitting, LocalFlow splits much fewer flows and can
even tolerate failures and asymmetry in the network.

The benefits of a switch-local algorithm are deep. Because it
requires no coordination between switches, LocalFlow can operate
at very small scheduling intervals at an unprecedented scale. This
allows it to adapt to highly dynamic traffic patterns. At the same
time, LocalFlow admits a wide variety of deployment options of its
control-plane logic, from running locally on each switch’s CPU, to
running on a single server for the entire network. In all cases, the
scheduling performed for each switch is independent of the others.

Splitting flows introduces several technical challenges in order
to achieve high accuracy, use modest forwarding table state, and
interact properly with TCP. (Although we focus on TCP, we also
discuss how to use LocalFlow with UDP traffic.) Besides split-
ting infrequently, LocalFlow employs two novel techniques to split
flows efficiently. First, it splits individual flows spatially for higher
accuracy, by installing carefully crafted rules into switches’ for-
warding tables that partition a monotonically increasing sequence
number. Second, it supports splitting at multiple resolutions to con-
trol forwarding table expansion, so rules can represent groups of
flows, single flows, or subflows. Our mechanisms for implementing
multi-resolution splitting use existing (for LocalFlow-NS) or forth-
coming (for LocalFlow) features of OpenFlow-enabled switches [34,
37]. Given the forthcoming nature of one of these features, and our
desire to evaluate LocalFlow at large scale, our evaluation focuses
on simulations. We use a full packet-level network simulator [43]
as well as real datacenter traces [6, 20].

Our evaluation shows that LocalFlow achieves near-optimal
throughput, outperforming ECMP by up to 171%, MPTCP by up
to 19%, and Hedera by up to 23%. Compared to PacketScatter
which splits all flows, it split less than 4.3% of flows on a real
switch packet trace and achieved 11% lower flow completion times.
By modestly increasing the duplicate-ACK threshold of end hosts’
TCP, LocalFlow avoids the adverse effects of packet reordering.
Interestingly, the high accuracy of its spatial splitting is crucial, as

even slight load imbalances significantly degrade throughput (e.g.,
by 17%). Our evaluation also uncovered several other interesting
findings, such as the high throughput of LocalFlow-NS on VL2
topologies [20].

We next compare LocalFlow to the landscape of existing solu-
tions. We define our network architecture as well as the symmetry
property in §3. We present the LocalFlow algorithm in §4 and our
multi-resolution splitting technique in §5. We conduct a theoretical
analysis of LocalFlow in §6 and evaluate it in §7. We address some
deployment concerns in §8 and then conclude.

2. EXISTING APPROACHES

We discuss a broad sample of existing flow routing solutions
along two important axes, scalability and optimality, while compar-
ing them to LocalFlow. Scalability encompasses a variety of met-
rics, including forwarding table state at switches, network commu-
nication, and scheduling frequency. Optimality refers to the maxi-
mum flow rates achieved relative to optimal routing.

Centralized solutions typically run a sequential algorithm at a
single server [2, 7, 9]. These solutions lack scalability, because
the cost of collecting flow information, computing flow paths, and
deploying these paths makes it impractical to respond to dynamic
workloads. Indeed, coordinating decisions in the face of traffic
burstiness and unpredictability is a serious problem [7, 20]. The
rise of switches with externally-managed forwarding tables, such
as OpenFlow [34, 37], has enabled solutions that operate at faster
timescales. For example, Hedera’s scheduler runs every 5 seconds,
with the potential to run at subsecond intervals [2], and MicroTE’s
scheduler runs each second [7]. But recent studies [6, 28] have con-
cluded that the size and workloads of today’s datacenters require
parallel route setup on the order of milliseconds, making a central-
ized OpenFlow solution infeasible even in small datacenters [14].
This infeasibility motivated our pursuit of a parallel solution.

End-host solutions employ more parallelism, and most give prov-
able guarantees. TeXCP [26] and TRUMP [22] dynamically load-
balance traffic over multiple paths between pairs of ingress-egress
routers (e.g., MPLS tunnels) established by an underlying routing
architecture. DARD [44] is a similar solution for datacenter net-
works that controls paths from end hosts. (We discuss MPTCP fur-
ther below.) These solutions explicitly model paths in their formu-
lation, though they limit the number of paths per source-destination
pair to avoid exponential representation and convergence issues.
Since end-host solutions lack information about other flows in the
network, they must continuously react to congestion on paths and
rebalance load.

Switch-local solutions have more visibility of active flows, espe-
cially at aggregation and core switches, but still lack a global view
of the network. They achieve high scalability and do not need to
model or rely on per-path statistics. For example, REPLEX [16]
gathers (aggregate) path information using measurements on adja-
cent links and by exchanging messages between neighbors.

None of the above solutions split individual flows, however, and
hence cannot produce optimal results, since the unsplittable MCF
problem is NP-hard and admits no constant-factor approximation [18].
MPTCP [39, 43] is an end-host solution that splits a flow into sub-
flows and balances load across the subflows via linked congestion
control. It uses two levels of sequence numbers and buffering to
handle reordering across subflows. DeTail [45] modifies switches
to do per-packet adaptive load balancing based on queue occu-
pancy, in order to reduce the tail of flow completion times. It relies
on layer-2 backpressure and modifications to end hosts’ TCP to
avoid congestion and handle reordering. Geoffray and Hoefler [19]
propose an adaptive source-routing scheme that uses layer-2 back-
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Figure 2: A FatTree network with 4-port switches. VL2 is a variation on this topology. End hosts A, G, I simultaneously transmit to
E, F, H and collide at switches Y and X, but there is sufficient capacity to route all flows at full rate.

pressure and probes to evaluate alternative paths. Like DeTail,
their scheme requires modifications to both end hosts and switches.
FLARE [27] is a technique for splitting flows in wide-area net-
works that can be combined with systems like TeXCP. It exploits
delays between packet bursts to route each burst along a different
path while avoiding reordering.

It is instructive to compare our solution, LocalFlow, to the above
schemes. Like all of them, LocalFlow splits individual flows, but
whereas the above schemes tend to split every flow, LocalFlow
splits very few flows. This is largely due to the fact that LocalFlow
balances load proactively, giving it full control over how flows are
scheduled and split, instead of reacting to congestion after-the-fact.
Unlike most of the above schemes, LocalFlow is purely switch-
local and does not modify end hosts. In this respect it is sim-
ilar to FLARE, but unlike FLARE it splits flows spatially (e.g.,
based on TCP sequence numbers) and does not make timing as-
sumptions. Our simulations show that spatial splitting significantly
outperforms temporal splitting. Finally, LocalFlow achieves near-

optimal routing in practice, which the other solutions have not demon-

strated, despite being considerably simpler than them.

The only flow-splitting scheme that is simpler than LocalFlow is
PacketScatter [11, 15], which we discussed earlier. LocalFlow can
be viewed as a load-aware, efficient version of PacketScatter. We
compare the schemes in detail while deriving LocalFlow’s design.

There is a long history of theoretical algorithms for the MCF
problem in each of the settings above: from centralized (e.g., [33]),
to end-host (e.g., [4]), to switch-local (e.g., [3]). Although these
algorithms give provably exact or approximate solutions, they are
disconnected from practice for reasons we have previously out-
lined [40]. For example, they assume flows can be split arbitrarily
(and instantaneously) at any node in the network, whereas this is
difficult to do in practice. LocalFlow, in contrast, achieves near-
optimal performance in both theory and practice.

3. ARCHITECTURE

LocalFlow is a flow routing algorithm designed for datacenter
networks. In this section, we describe the components of this net-
work (§3.1), outline the main scheduling loop for each switch (§3.2),
and define the networks on which LocalFlow is efficient (§3.3).

3.1 Components and deployment

Figure 2 shows a typical datacenter network of end hosts and
switches on which LocalFlow might be deployed. The techniques
we use are compatible with existing or forthcoming features of ex-
tensible switches, such as OpenFlow [34, 37], Juniper NOS [25],
or Cisco AXP [12].

The architecture and capabilities of hardware switches differ sig-
nificantly from that of end hosts, making even simple tasks chal-

lenging to implement efficiently. The detail in Figure 2 shows a typ-
ical switch architecture, which consists of a control plane and a data
plane. The data plane hardware has multiple physical (e.g., Ether-
net) ports, each with its own line card, which (when simplified)
consists of an incoming lookup/forwarding table in fast memory
(SRAM or TCAM) and an outgoing queue. The control plane per-
forms general-purpose processing and can install or modify rules in
the data plane’s forwarding tables, as well as obtain statistics such
as the number of bytes that matched a rule. To handle high data
rates, the vast majority of traffic must be processed by the data-
plane hardware, bypassing the control plane entirely.

The hardware capabilities, resources, and programmability of
switches are continually increasing [35, 38]. Being a local algo-
rithm, LocalFlow’s demands on these resources are limited to its
local view of network traffic, which is orders of magnitude smaller
than that of a centralized scheduler [6, 28]. Since LocalFlow runs
independently for each switch, it supports a wide variety of de-
ployment options of its control plane logic. For example, it can run
locally on each switch, using a rack-local scheduler with Open-
Flow switches or a separate blade in the switch chassis of Juniper
NOS or Cisco AXP switches. Alternatively, the number of these
schedulers can be reduced and their locations changed to suit the
network’s scalability requirements. In the limit, a single central-
ized scheduler may be used. Regardless of the deployment strategy,
LocalFlow’s independence allows each switch to be scheduled by
separate threads, processes, cores, or devices.

3.2 Main LocalFlow scheduling loop

LocalFlow runs a continuous scheduling loop for each switch.
At the beginning of every interval, it:

1) Measures the rate of each active flow. This is done by querying
the byte counter of each forwarding rule from the previous
interval and dividing by the interval length.

2) Runs the scheduling algorithm using the flow rates from step
1 as input.

3) Updates the rules in the forwarding table based on the outcome
of step 2, and reset all byte counters.

Steps 2 and 3 are described in §4 and §5, respectively. Note that
Step 1 relies on measurements from the previous interval to inform
scheduling decisions in the current interval. Although traffic pat-
terns may change between intervals, LocalFlow’s design copes well
with this unpredictability, as we shall see.

3.3 Symmetric networks

Although LocalFlow can be run on any network, it only achieves
optimal throughput on networks that satisfy a certain symmetry
property. This property is defined as follows:



DEFINITION 1. A network is symmetric if for all source-
destination pairs (s,d), all switches on the shortest paths between
s and d that are the same distance from s have identical outgoing
capacity to d.

In other words, any of these switches are equally good interme-
diate candidates for routing a flow between s and d. Using the
example of Figure 2, switches Y and Z are both on a shortest path
between (A,E), and both have one link of outgoing capacity to E.

Real deployments and most proposed datacenter architectures
satisfy the symmetry property. For example, it is satisfied by fat-
tree-like networks (e.g., [1, 20, 31]), which are Clos topologies [13]
arranged as multi-rooted trees. FatTree [1] is a three-stage fat-tree
network built using identical k-port switches arranged into three
levels—edge, aggregation, and core—that supports full bisection
bandwidth between k> /4 end hosts. Figure 2 shows a 16-host Fat-
Tree network (k = 4). F10 [31] is a recent variant of FatTree that
skews the connections between switch levels to achieve better fault
tolerance, but is still symmetric by our definition. VL2 [20] mod-
ifies FatTree by using higher-capacity links between Top-of-Rack
(ToR, i.e., edge), aggregation, and intermediate (i.e., core) switches.
Unlike FatTree, the aggregation and intermediate switches form
a complete bipartite graph in VL2. All of these networks can be
oversubscribed by connecting more hosts to each edge/ToR switch,
which preserves their symmetry property.

4. ALGORITHM LOCALFLOW

This section presents LocalFlow, our switch-local algorithm for
routing flows in symmetric datacenter networks. It is invoked in
Step 2 of the main scheduling loop (§3.2). At a high-level, Local-
Flow attempts to find the optimal flow routing for the following
maximum MCF problem:

maximize: ZU,-(x,-) (D
i
subjectto: Y frd= Y frdivysd,
w:(u,v)eE wi(v,w)eE
Z ;’5: Z x; 1 Vs,d
u:(s,u)€E irs—d

u,v

Zfs’d <cuy : Y(u,v) € E, link capacity c,,y
s,d

This formulation reflects the complementary roles LocalFlow

and TCP play. LocalFlow balances the flow rates f,jf,l across links
(u,v) between adjacent switches, for a fixed set of commodity send
rates x;. This technique is similar to, but more aggressive than, the
original link-balancing technique of Awerbuch and Leighton [5].
The intuition is that if we split a flow evenly over equal-cost links
along its path to a destination, then even if it collides with other
flows midway, the colliding subflows will be small enough to still
route using the available capacity. In a symmetric network with a
fixed set of send rates, this is equivalent to minimizing the maxi-
Lo fid

mum link utilization: minmax, ,)eg ==

Link balancing on its own does not guarantee an optimal solu-
tion to the maximum MCF objective (1), which depends on the per-
commodity (concave) utility functions U;. Fortunately, LocalFlow
can rely on the end hosts” TCP congestion control for this purpose.
Using an idealized fluid model, it can be shown [32] that assuming
backlogged senders (i.e., senders have more data to send) and given
a fixed routing matrix, TCP, in its various forms, maximizes the to-
tal network utility. By balancing the per-link flow rates, LocalFlow
adjusts the flow routing in response to TCP’s optimized send rates,

while TCP in turn adapts to the new routing. We show how this
interaction achieves the MCF optimum in §6.

We first describe a basic load-agnostic solution for link balanc-
ing called PacketScatter (§4.1). We then improve this solution to
yield LocalFlow (§4.2). Finally, we discuss a simple extension to
LocalFlow that copes with network failures and asymmetry (§4.3).

4.1 Basic solution: PacketScatter

The simplest solution for link balancing is to split every flow
over every equal-cost outgoing link of a switch ( f,fg = fifjfﬂ). We
call this scheme PacketScatter. PacketScatter round-robins packets
to a given destination over the switch’s outgoing links; it has been
supported by Cisco switches for over a decade now [11]. Recent
work by Dixit et al. [15] studies variants of the scheme that select a
random outgoing link for each packet to reduce state. However, this
approach is problematic because even slight load imbalances due to
randomness can significantly degrade throughput, as our evaluation
confirms (§7.6).

Although PacketScatter routes flows optimally, because it un-
conditionally splits every flow at individual-packet boundaries, it
can cause excessive reordering at end hosts. These out-of-order
packets can inadvertently trigger TCP fast-retransmit, disrupting
throughput, or delay the completion of short-lived flows, increas-
ing latency. On the upside, because the splitting is load agnos-
tic, it is highly accurate and oblivious to traffic bursts and unpre-
dictability. However, by the same token, it cannot adapt to partial
network failures, since it will continue sending the same flow to
under-capacitated subtrees.

4.2 LocalFlow

We obtain LocalFlow by applying three ideas to PacketScatter
that remove its weaknesses while retaining its strengths. The pseu-
docode is given in Algorithm 1.

First, instead of unconditionally splitting every flow, we group
the flows by destination d and distribute their aggregate flow rate
evenly over |Ly| outgoing links (lines 2-6 of Algorithm 1). This
corresponds to a simple variable substitution f,j{ = fifjf,' in (1).

This means that LocalFlow splits at most |L;| — 1 times per des-
tination. Function BINPACK does the actual splitting. It sorts the
flows according to some policy (e.g., increasing rate) and succes-
sively places them into |L;| equal-sized bins (lines 17-25). If a
flow does not fit into the current least loaded bin, BINPACK splits
the flow (possibly unevenly) into two subflows, one which fills the
bin and the other which rejoins the sorted list of flows (lines 20-21).
When the function returns, the total flow to the destination has been
evenly distributed.

Our second idea is to allow some slack in the splitting. Namely,
we allow the |L;| bins to differ by at most a fraction & € (0, 1] of the
link bandwidth (line 19). (For simplicity, we overload & to mean
either this fraction or the actual flow rate it corresponds to, depend-
ing on context.) This not only reduces the number of flows that are
split, but it also ensures that small flows of rate < § are never split.
Note that small flows are still bin-packed (and hence scheduled) by
the algorithm, and only the last such flow entering a bin may give
rise to an imbalance. After BINPACK returns, LOCALFLOW en-
sures that larger bins are placed into less loaded links (lines 7-10).
This ensures that the links stay balanced to within § even after all
destinations have been processed, as proved in Lemma 6.2. Fig-
ure 1 illustrates the above two ideas. In the example shown, no
flows are actually split by LocalFlow because they are accommo-
dated by the J slack, whereas PacketScatter splits every flow.

Since LocalFlow may split a flow over a subset of the outgoing
links, possibly unevenly, we cannot use the (load-agnostic) round-



1 function LocALFLOW (flows F, links L)
2 dests D={f.dest|feF}

3 foreachd € D do

4 flows Fy ={f € F | f.dest =d}

s links Ly ={l €L |lisonapathtod}
6 bins By = BINPACK(Fy, |Lg|)

7 Sort B, by increasing total rate

8 Sort L; by decreasing total rate

9 foreachb € B;, [ € L; do

10 Insert all flows in b into /

un  end

12 bins function BINPACK(flows F}, |links Ly|)
B3 8=..;policy=...

u  binCap = (Y scp, frate)/|Ly|

15 bins By = {|Ly]| bins of capacity binCap}
16 Sort Fy by policy

1w foreach f € F; do

18 b = argmax,cp b.residual

19 if f.rate > b.residual 4+ 5 then

2 {f1,/2} = SPLIT(f,b.residual, f .rate — b.residual )
2 Insert fi into b; Add f to F; by policy

p3) else

23 Insert f into b

24 end

s end

26 return By

Algorithm 1: Our switch-local algorithm for routing flows on fat-
tree-like networks.

robin scheme of PacketScatter to implement SPLIT. Instead, we in-
troduce a new, load-aware scheme called multi-resolution splitting
that splits traffic in a flexible manner, by installing carefully crafted
rules into the forwarding tables of switches. These rules, along with
their current rates (as measured in Step 1 of the main scheduling
loop), comprise the input set F' to function LOCALFLOW. Multi-
resolution splitting is discussed in §5.

Even though LocalFlow’s splitting strategy is load aware, it still
uses local measurements to balance load proactively, which allows
it to cope with traffic burstiness and unpredictability.

4.3 Handling failures and asymmetry

Perhaps surprisingly, many failures in a symmetric network can
be handled seamlessly, because they do not violate the symme-
try property. In particular, complete node failures—that is, failed
end hosts or switches—remove all shortest paths between a source-
destination pair that pass through the failed node. For example,
if switch X in Figure 2 fails, all edge switches in the pod now
have only one option for outgoing traffic: switch W. The network is
still symmetric, so LocalFlow’s optimality still holds. Indeed, even
PacketScatter can cope with such failures.

Partial failures—that is, individual link or port failures, includ-
ing slow (down-rated) links—are more difficult to handle, because
they violate the symmetry property. For example, consider when
switch X in Figure 2 loses one of its uplinks. PacketScatter at the
edge switches would continue to distribute traffic equally between
switches W and X, even though X has half the outgoing capacity
as W. Also, since PacketScatter splits every flow, more flows are
likely to be affected by a single link failure. This results in subopti-
mal throughput. However, with a simple modification, LocalFlow
is able to cope with this type of failure. When switch X experiences
the partial failure, other LocalFlow schedulers can learn about it
from the underlying link-state protocol (which automatically dis-
seminates this connectivity information). The upstream schedulers

determine the fraction of capacity lost and use this information to
rebalance traffic sent to W and X, by simply modifying the bin sizes
used in lines 14-15 of Algorithm 1. In this case, LocalFlow sends
twice as much traffic to W than X.

Note that this rebalancing may not be optimal. In general, deter-
mining the optimal rebalancing strategy requires non-local knowl-
edge because the network is now asymetric. A scheme similar to
the above can be used to run LocalFlow in an asymmetric network.

5. MULTI-RESOLUTION SPLITTING

Multi-resolution splitting is our spatial splitting technique for im-
plementing the SPLIT function in Algorithm 1. It splits traffic at
different granularities by installing carefully crafted rules into the
forwarding tables of emerging programmable switches [37]. Fig-
ure 3 illustrates each type of rule. These rules represent single flows
and subflows (§5.1), but they can also represent “metaflows” (§5.2),
i.e., groups of flows to the same destination.

Since metaflow and subflow rules use partial wildcard matching,
they must appear in the TCAM of a switch, which is scarcer and
less power-efficient than SRAM. However, our simulations show
that LocalFlow splits very few flows in practice, so only a few
TCAM rules are needed; single-flow rules can be placed in SRAM.

5.1 Flows and subflows

To represent a single flow, we install a forwarding rule that ex-
actly specifies all fields of the flow’s 5-tuple. This uniquely identi-
fies the flow and thus matches all of its packets.

To split a single flow into two or more subflows, we use one of
two techniques. Although these techniques may not be supported
by current OpenFlow switches, the latest specifications [37] sug-
gest that the functionality will appear soon. The first technique
extends a single-flow rule to additionally match bits in the packet
header that change during the flow’s lifetime, e.g., the TCP se-
quence number. To facilitate finer splitting at later switches, we
group packets into contiguous blocks of at least ¢ bytes, called
flowlets, and split only along flowlet boundaries. Our notion of
flowlets is spatial and thus different from that of FLARE [27],
which crucially relies on timing properties.

By carefully choosing which bits to match and the number of
rules to insert, we can split flows with different ratios and flowlet
sizes. For example, to split a flow evenly over L links with flowlet
size ¢, we add L forwarding rules for each possible 1g L-bit string
whose least significant bit starts after bit [1g#]| in the TCP sequence
number.! Since TCP sequence numbers increase consistently and
monotonically, this causes the flow to match a different rule ev-
ery ¢ bytes. Also, since initial sequence numbers are randomized,
the flowlets of different flows are also desynchronized. Uneven
splitting can be achieved in a similar way. For example, the sub-
flow rules in Figure 3 split a single flow over three links with ratios
(1/4,1/4,1/2) and ¢t = 1024 bytes. By using more rules, we can
support uneven splits of increasing precision.

Since later switches along a path may need to further split sub-
flows from earlier switches, they should use a smaller flowlet size
than the earlier switches. For example, edge switches in Figure 2
may use t = 2 maximum segment sizes (MSS) while aggregation
switches use r = 1 MSS. In general, smaller flowlet sizes lead to
more accurate load balancing.

An alternative technique that avoids the need for flowlets is to as-
sociate a counter of bytes with each flow that is split, and increment
it whenever a packet from that flow is sent. Such counters are com-

1Since TCP sequence numbers represent a byte offset, the bit string should actually
start after bit [1g(z x MSS) ]|, where MSS is the maximum size of a TCP segment.
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Figure 3: Multi-resolution splitting rules (M = metaflow, F =
flow, S = subflow).

mon in OpenFlow switches [37]. The value of the counter is used
in place of the TCP sequence number in the subflow rules of Fig-
ure 3. Since each switch uses its own counter to measure each flow,
we no longer rely on contiguous bytes (flowlets) for downstream
switches to make accurate splitting decisions. The counter method
is also appropriate for UDP flows, which do not have a sequence
number in their packet headers.

Compared to the above techniques, temporal splitting techniques
like FLARE are inherently less precise, because they rely on unpre-
dictable timing characteristics such as delays between packet bursts
inside a flow. For example, during a bulk data shuffle between
MapReduce stages, there may be few if any intra-flow delays. This
lack of precision leads to load imbalances that significantly degrade
throughput, as shown in §7.6.

5.2 Metaflows

To represent a metaflow, we install a rule that specifies the des-
tination IP field but uses wildcards to match all other fields. This
matches all flows to the same target, saving forwarding table space,
as illustrated by the third metaflow rule in Figure 3. To split a
metaflow, we additionally specify some least significant bits (LSBs)
in the source port field. In the example, the metaflow rules dis-

tributes all flows to target E over three links with ratios (1/4,1/4,1/2).

The “all” rule is placed on the bottom to illustrate its lower prior-
ity (it captures the remaining 1/2), although in OpenFlow priorities
are explicit.

If there is a diversity of flows and source ports, this scheme splits
the total flow rate by the desired ratios (approximately). But it may
not do so if the distribution of source ports or flow sizes is unfa-
vorable: for example, if there is a single large flow and many small
flows. In such situations, metaflow rules can be combined with
subflow rules for better accuracy. For example, a metaflow rule
can be split using the subflow splitting technique. Note that this
simultaneously splits all flows that match the rule.

We did not use metaflow rules in our evaluation since we found
LocalFlow’s space utilization to be modest in practice (§7.4).

6. ANALYSIS

We begin by analyzing the local (per-switch) complexity of Local-
Flow, and then prove its optimality.

During each round, LocalFlow executes O(|F|log|F| +
Y.a|Fi|log|F;|) = O(|F|log|F|) sequential steps if 6 = 0, since it
need not sort the bins and links in lines 7-8, where |Fy| is the num-
ber of flows to destination d. If § > 0, O(|F|log |F|+|F||L|log|L]|)
steps are executed, where |L| is the number of outgoing links. Rel-
ative to the number of active flows, |L| can be viewed as a constant.
In terms of space complexity, LocalFlow maintains at least one rule
per flow; this can be reduced to one rule per destination by using
metaflows. Both of these numbers increase when flow rules are

split. We measure LocalFlow’s space overhead on a real datacenter
workload in §7.4.

We now show that, in conjunction with TCP, LocalFlow maxi-
mizes the total network utility (1) in an idealized fluid model [10].
In the remainder of this section, we refer to this idealized Network
Utility Maximization (NUM) model when discussing the proper-
ties of TCP with respect to the MCF problem. Since LocalFlow
and TCP alternately optimize their respective variables, we first
show that the “master” LocalFlow optimization adapts link flow
rates f,f , to minimize the maximum link cost Z"—f“d‘, for the com-

Cuy

modity send rates x; determined by the “slave” TCP sub-problem.
Then we examine the optimality conditions for TCP and show how
the “link-balanced” flow rates determined by LocalFlow lead to an
optimal solution to our original MCF objective.

LEMMA 6.1. If 6 =0, algorithm LocalFlow routes the mini-
mum cost MCF with fixed commodity send rates.

PROOF. The symmetry property from §3.3 implies that all out-
going links to a destination lead to equally-capacitated paths. Thus,
the maximum load on any link is minimized by splitting a flow
equally over all outgoing links; this is achieved by lines 6-10 of
LocalFlow. No paths longer than the shortest paths are used, as
they would intersect with a shortest path and thus add to its load.

Since we can view multiple flows with the same destination as
a single flow originating at the current switch, grouping does not
affect the distribution of flow. Repeating this argument for each
destination independently yields the minimum-cost flow. [

When & > 0, LocalFlow splits the total rate to a destination d
over |L| outgoing links, such that no link receives more than 6 flow
rate than another. This process is repeated for all d € D using the
same set of links L. Then,

LEMMA 6.2. At the end of LocalFlow, the total rate per link is
within an additive & of each other.

PROOF. The lemma trivially holds when |L| = 1 because no
splitting occurs. Otherwise, the proof is an induction over the des-
tinations in D. Initially there are no flows assigned to links, so
the lemma holds. Suppose it holds prior to processing a new des-
tination. Let the total rate on the bins returned by BINPACK be
Y1,Y2,...,yL in increasing order; let the total rate on the links be
X1,X2,...,Xxr in decreasing order. After line 10, the total rate on
the links is x; +y1,x2 +y2,...,x +yr. If 1 <i < j <L are the
links with maximum and minimum rate, respectively, then we have
(i +yi) = (xj+yj) = (xi —x;) + (vi —yj) < 8, since y; < y; and
x; —x; < & by the inductive hypothesis. The case when j < i is
similar. [

THEOREM 6.3. LocalFlow, in conjunction with end-host TCP,
achieves the maximum MCF optimum.

PROOF. To show that LocalFlow’s “link-balanced” flow rates
enable TCP to maximize the maximum MCF objective (1), we turn
to the node-centric NUM formulation [10] of the TCP sub-problem,
adapted for the multi-path setting to allow flow splitting.

maximize: ZU,- (i)
i

Zx[ Z 71:[’7 <cuy: Y(u,v) €E

i pi(uy)ep
Y al=1vi
p

Here, LocalFlow has already computed the set of flow variables
f,f »» which have been absorbed into the path probabilities n'lf". Each



77:;” determines the proportion of commodity x;’s traffic that tra-
verses path p, where p is a set of links connecting source s to
destination d. Since these variables are derived from the link flow
rates, they implicitly satisfy the original MCF flow and send rate
constraints (1).

To examine the effect of LocalFlow on the MCF objective, we
focus on the optimality conditions for the TCP sub-problem, which
is solved using dual decomposition [10]. In this approach, we first
form the Lagrangian L(x, A) by introducing dual variables A, ,, one
for each link constraint.

L(x,A) = Z/f(x,)dx, *Zlu‘v <in (Z 75,'1) Cu‘v)
i i p

u,v u,v)ep
For generality, we define the TCP utility to be a concave function
where U;(x;) = [ f(x;)dx;, as in [32], and f is differentiable and
invertible. Most TCP utilities (e.g., log) fall in this category [32].
Next, we construct the Lagrange dual function Q(A) maximized
with respect to x;:

x;‘:f’l(ﬁ)whena—L*Oin,B:Zﬂip Y Ay @

0xi p (u,v)ep

0 =X ( [ f0si)5i =11 B)8 ) + Lus-cs

u,v

Minimizing Q with respect to A gives both the optimal dual and
primal variables, since the original objective is concave.

YMa(:)

d
Z nf:cu_,v when 0 =0,

2 V(u,v) €E (3)
p:(uv)ep uy

When (3) is satisfied, the system has reached the maximum net-
work utility (1). TCP computes this solution in a distributed fashion
using gradient ascent. End-hosts adjust their local send rates x; ac-
cording to implicit measurements of path congestion }.(,,,)cp Ay
and switches update their per-link congestion prices A, (queuing
delay) according to the degree of backlog.

According to the symmetry property, all nodes at the same dis-
tance from source s along the shortest paths must have links of
equal capacity to nodes in the next level of the path tree. Thus, for
all links from a node u to nodes (v, w, etc.) in the next level of a
path tree, for any source-destination pair, we have:

YO Y w=Yste Lo @

p:(uy)ep p:(u,w)ep

We know that the set of commodities i that traverse these links are
the same, since they are at the same level in the path tree. Thus,
we can satisfy (3) by ensuring that the per-commodity values of
(4) are equal Vi. PacketScatter satisfies this trivially by splitting
every commodity evenly across the equal-cost links ( fifjf = gf;fﬂ),
resulting in equal link probabilities.

LocalFlow, on the other hand, groups commodities by destina-
tion when balancing the flow rate across links and only splits indi-
vidual commodities when necessary. However, by the same argu-
ment for commodities, we know that the set of destinations reach-
able via the links are the same as well. Thus, if we group the com-
modities in (3) by destination d then the condition is satisfied when:

Yi® Y o=y r'e Y o w

iis—d p:(u,v)ep irs'—d p:(u,w)ep

Since LocalFlow distributes the per-destination flow (x}) evenly

across equal-cost links, i.e., f,ﬁv = f4 Vd, we have:

u,w

Yo ¥ A=Y Yy ®)
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By substituting in (2), we arrive at the per-destination optimality
condition for (3). Note that LocalFlow will continue to adjust flow
rates to achieve (5) in response to TCP’s optimized send rates (and
vice-versa). On each iteration, LocalFlow minimizes the maximum
link utilization by balancing per-destination link flow rates, open-
ing up additional head room on each link for the current commod-
ity send-rates x; to grow. Between LocalFlow iterations, the TCP
sub-problem maximizes its send rate objective to consume the ad-
ditional capacity. Given a proper timescale separation between the
“master” and “slave” problems, the distributed convex optimization
process converges [10] to an optimal network utility. [

In practice, a proper timescale separation is on the order of a few
RTTs, which in total is still <Ims for a typical datacenter. Thus,
LocalFlow can safely use a scheduling interval of 10ms or greater.
In general, the speed of convergence to the optimum depends on
the variant of TCP being used.

Note that the individual send rate utility functions U; can differ
by source. This corresponds to end-hosts using different TCP vari-
ants (e.g., Cubic, NewReno) or even their own application-level
congestion control over UDP. As long as the utility functions are
concave and the send rates are elastic and not unbounded or static,
i.e., they can adjust to link congestion back pressure, then the opti-
mal MCF conditions under LocalFlow hold. If “fairness” between
send rates is an issue, then the provider must ensure that the end-
hosts employ some form of fairness-inducing congestion control
(e.g., Ui =log Vi) [29].

7. EVALUATION

In this section, we evaluate LocalFlow to demonstrate its practi-
cality and to justify our theoretical claims. Specifically, we answer
the following questions:

e Does LocalFlow achieve optimal throughput? How does it
compare to Hedera, MPTCP, and other schemes? (§7.2)

e Does LocalFlow tolerate network failures? (§7.3)

e Given the potential for larger rule sets, how much forwarding
table space does LocalFlow use? (§7.4)

e Do smaller scheduling intervals give LocalFlow an advantage
over centralized solutions (e.g., Hedera)? (§7.5)

e Is spatial flow splitting better than temporal splitting (e.g., as
used by FLARE)? (§7.6)

e How well does LocalFlow manage packet reordering com-
pared to PacketScatter, and what is its effect on flow com-
pletion time? (§7.7)

We use different techniques to evaluate LocalFlow’s performance,
including analysis (§6) and simulations on real datacenter traffic
(§7.4), but the bulk of our evaluation (§7.2-§7.7) uses a packet-
level network simulator. Packet-level simulations allow us to iso-
late the causes of potentially complex behavior between LocalFlow
and TCP (e.g., due to flow splitting), to test scenarios at a scale
larger than any testbed we could construct, and to facilitate compar-
ison with prior work. In fact, we used the same simulator codebase
as MPTCP [39, 43], allowing direct comparisons.

7.1 Experimental setup

Simulations. We developed two simulators for LocalFlow. The
first is a stand-alone simulator that runs LocalFlow on pcap packet
traces. We used the packet traces collected by Benson et al. [6]
from a university datacenter switch. To stress the algorithm, we
simulated the effect of larger flows by constraining the link band-
width of the switch.
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Figure 4: Individual flow throughputs for
a random permutation on a 1024-host Fat-

Tree network. Tree network.

Our second simulator is based on Atsim, a full packet-level net-
work simulator written by Raiciu et al. [39, 43]. The simulator
models TCP and MPTCP in similar detail to ns2, but is optimized
for larger scale and high speed. It includes an implementation of
Hedera’s First Fit heuristic [2]. We modified and extended htsim to
implement the LocalFlow algorithm. Notably, we added a switch
abstraction that groups queues together and maintains a forwarding
table based on the multi-resolution splitting rules defined in §5.

We allowed the duplicate-ACK (dup-ACK) threshold of end-host
TCP to be modified (the default is 3), but otherwise left end hosts
unchanged. Changing the threshold is easy in practice (e.g., by
writing to /proc/sys/ on Linux).

Topologies. We ran our experiments on the different fat-tree-like
topologies described in §3, including:

e FatTree topology built from k-port switches [1]. We used 1024
hosts (k = 16) when larger simulations were feasible, and 128
hosts (k = 8) hosts for finer analyses.

e VL2 topology [20]. We used 1000 hosts with 50 ToR, 20
aggregation, and 5 intermediate switches. Inter-switch links
have 10 times the bandwidth of host-to-ToR links.

e Oversubscribed topologies, created by adding more hosts to
edge/ToR switches in the above topologies. We used a 512-
host, 4:1 oversubscribed FatTree network (k = 8).

All our networks were as large or larger than those used by
Raiciu et al. [39] for their packet-level simulations. Unless oth-
erwise specified, we used 1000-byte packets, 1Gbps links (10Gbps
inter-switch links for VL2), queues of 100 packets, and 100us de-
lays between queues.

TCP NewReno variants. We noticed in our simulation experiments
that flows between nearby hosts of a topology sometimes suffered
abnormally low throughput, even though they did not noticeably
affect the average. We traced this problem to the NewReno variant
used by htsim, called Slow-but-Steady [17], which causes flows to
remain in fast recovery for a very long time when network round-
trip times are low, as in datacenters and especially between nearby
hosts. RFC 2582 [17] suggests an alternative variant of NewReno
for such scenarios called Impatient. After switching to this variant,
the low-throughput outliers disappeared.

7.2 LocalFlow achieves optimal throughput
7.2.1 MapReduce-style workloads

We ran LocalFlow on a 1024-host FatTree network using a ran-
dom permutation traffic matrix of long flows, i.e., each host sends
a flow to one other host chosen at random without replacement.

Figure 5: Individual flow throughputs for
a stride permutation on a 1024-host Fat-

Figure 6: Individual flow throughputs for
arandom permutation on a 1000-host VL2

network.

Given its topology, a FatTree network can run this workload at full
bisection bandwidth. We used a scheduling interval of 50ms and in-
creased the dup-ACK threshold to accommodate reordering; these
parameters are discussed later. We also ran PacketScatter, ECMP,
Hedera with a 50ms scheduling interval, and MPTCP with 4 and 8
subflows per flow. Note that 50ms is an extremely optimistic inter-
val for Hedera’s centralized scheduler, being one to two orders of
magnitude smaller than what it can actually handle [2, 39].

Figure 4 shows the throughput of individual flows in increasing
order, with the legend sorted by decreasing average throughput.
As expected, LocalFlow achieves near-optimal throughput for all
flows, matching the performance of PacketScatter to within 1.4%.
LocalFlow’s main benefit over PacketScatter is that it splits fewer
flows when there are multiple flows per destination, as we show
later. Although LocalFlow-NS attempts to distribute flows locally,
it does not split flows and so cannot avoid downstream collisions.
It is also particularly unlucky in this case, performing worse than
ECMP (typically their performance is similar).

MPTCP with 8 subflows achieves an average throughput that is
8.3% less than that of LocalFlow, and its slowest flow has 45%
less throughput than that of LocalFlow. MPTCP with 4 subflows
(not shown) performs substantially worse, achieving an average
throughput that is 21% lower than LocalFlow. This is because there
are fewer total subflows in the network; effectively, it throws fewer
balls into the same number of bins. ECMP has the same problem
but much worse because it throws N balls into N bins; this induces
collisions with high probability, resulting in an average throughput
that is 44% less than the optimal. For the remainder of our analy-
sis, we use 8 subflows for MPTCP, the recommended number for
datacenter settings [39].

Hedera’s average throughput lies between MPTCP with 4 sub-
flows and 8 subflows, but exhibits much higher variance. Although
not shown, Hedera’s variance was £28%, compared to £14% for
MPTCP with 4 subflows. In general, Hedera does not cope well
with a random permutation workload, which sends flows along dif-
ferent path lengths (most reach the core, some only reach aggrega-
tion, and a few only reach edge switches).

If instead we guarantee that all flows travel to the core before de-
scending to their destinations, Hedera performs much better. Fig-
ure 5 shows the results of a stride(N/2) permutation workload,
where host i sends a flow to host i + N /2. All algorithms achieve
higher throughput, and Hedera comes close to LocalFlow’s perfor-
mance, though its slowest flow has 49% less throughput than that
of LocalFlow. Further, forcing all traffic to traverse the core in-
curs higher latency for potentially local communication, and yields
worse performance in more oversubscribed settings. In fact, signif-



Total throughput, average flow completion time

ECMP 0.0%, 0.0% LF-1 +6.7%, —0.2%
Hedera —7.2%, —17.0% LF-1(6=0.01) +10.9%, —2.2%
MPTCP +6.0%, +28.7% LF-1 (6=0.05) +7.2%, —1.0%
PS +12.7%, +10.4% LF-NS (6=1) +6.6%, —1.9%

Figure 7: Total throughput and average flow completion time
relative to ECMP, for a heterogeneous VL2 workload on a 512-
host, 4:1 oversubscribed FatTree.

icant rack- or cluster-local communication is common in datacenter
settings [6, 28], suggesting larger benefits for LocalFlow.

It may seem surprising that LocalFlow-NS has the highest av-
erage throughput in Figure 5, but this is due to the uniformity of
the workload. LocalFlow-NS distributes the flows from each pod
evenly over the core switches; since these flows target the same
destination pod, the distribution is perfect. A similar effect arises
when running a random permutation workload on the 1000-host
VL2 topology, per Figure 6. In a VL2 network, aggregation and in-
termediate switches form a complete bipartite graph, thus it is only
necessary to distribute the number of flows evenly over interme-
diate switches, which LocalFlow-NS does. In fact, LocalFlow-NS
achieves optimal throughput for any permutation workload.

7.2.2  Dynamic, heterogeneous workloads

Real datacenters are typically oversubscribed, with hosts sending
variable-sized flows to multiple destinations simultaneously. Using
a 512-host, 4:1 oversubscribed FatTree network, we tested a realis-
tic workload by having each host select a number of simultaneous
flows to send from the VL2 dataset [20, Fig. 2]2, with flow sizes
also selected from this dataset. The flows ran in a closed loop,
i.e., they restarted after finishing (with a new flow size). We ran
LocalFlow with a 10ms scheduling interval and also allowed ap-
proximate splitting (8 > 0). We used a 10ms scheduling interval
for Hedera as well, which again is extremely optimistic. Figure 7
shows results for the total throughput (total number of bytes trans-
ferred) and average flow completion times (which we discuss later
in §7.7).

Using the VL2 distributions, there are over 12,000 simultaneous
flows in the network. With this many flows, even ECMP’s load-
agnostic hashing should perform well due to averaging, and we ex-
pect all algorithms to deliver similar throughput; Figure 7 confirms
this. Nevertheless, there are some interesting points to note.

First, LocalFlow-NS outperforms ECMP because it intelligently
distributes flows, albeit locally. In fact, its performance is almost
as good as LocalFlow due to the large number of flows. Local-
Flow does not appear to gain much from exact splitting. We be-
lieve this is because over 86% of flows in the VL2 distribution
are smaller than 125KB; such flows are small enough to complete
within a 10ms interval, so it may be counterproductive to move
or split them midstream. On the other hand, splitting too approx-
imately (6 = 0.05) also hurts LocalFlow’s performance, because
of the slight load imbalances incurred. § = 0.01 strikes the right
balance for this workload, achieving close to PacketScatter’s per-
formance. All LocalFlow variants outperform MPTCP.

Hedera achieves 7.17% less throughput than ECMP. This is likely
due to the small flows mentioned above, which are large enough to
be scheduled by Hedera, but better left untouched. In addition, as
Raiciu et al. [39] observed, Hedera optimistically reserves band-
width along a flow’s path assuming the flow can fill it, but this

2We obtained the VL2 distributions by extracting plot data from the paper’s PDF file.
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Figure 8: Individual flow throughputs for a random permuta-
tion on a 128-host FatTree network with failed links.

bandwidth may go to waste in the current scheduling interval if the
flow is unable to do so.

7.3 LocalFlow handles failures gracefully

Although PacketScatter’s throughput is competitive with Local-
Flow above, this is not the case when network failures occur. As
discussed in §4.3, if an entire switch fails, PacketScatter is com-
petitive with LocalFlow, but if failures are skewed (as one would
in practice), PacketScatter’s performance suffers drastically. Fig-
ure 8 shows the results of a random permutation on a 128-host Fat-
Tree network, when one aggregation switch (out of four) in each
pod loses 3 of its 4 uplinks to the core. Upon learning of the
failure, LocalFlow at the edge switches rebalances most outgoing
traffic to the three other aggregation switches. From Figure 8, we
see that LocalFlow and MPTCP deliver near-optimal throughput,
whereas PacketScatter performs even worse than ECMP, achieving
only 48% of the average throughput of LocalFlow.

7.4 LocalFlow uses little forwarding table space

LocalFlow distributes the aggregate flow to each destination, so
if several flows share the same destination, the number of subflows
(splits) per flow is small. With approximate splitting, even fewer
flows are split due to the added slack. This is important because
splitting flows increases the size of a switch’s forwarding tables.

To evaluate how much splitting LocalFlow does in practice, we
ran our stand-alone simulator on a 3914-second TCP packet trace
that saw 259,293 unique flows, collected from a 500-server univer-
sity datacenter switch [6]. We used a scheduling interval of 50ms
and different numbers of outgoing links, while varying &. Figure 9
(top) shows these results as a function of 8. Although LocalFlow
splits up to 78% of flows when & = 0 (using 8 links), this number
drops to 21% when 8 = 0.01 and to 4.3% when 8 = 0.05. Thus, a
slack of just 5% results in 95.7% of flows remaining unsplit! This
is a big savings, because such flows do not require wildcard match-
ing rules, and can thus be placed in an exact match table in the more
abundant and power-efficient SRAM of a switch.

The average number of subflows per flow similarly drops from
3.54 when 6 = 0 to 1.09 when 6 = 0.05 (note the minimum is 1
subflow per flow). This number more accurately predicts how much
forwarding table space LocalFlow will use, since it counts the total
number of rules required. Thus, using 8 links and 6 = 0.05, Local-
Flow uses about 9% more forwarding table space than LocalFlow-
NS, which only needs one rule per flow. Although PacketScatter
creates almost 8 times as many subflows, it only needs to store a
small amount of state per destination, of which there are at most
500 in this dataset. Later, we will see that PacketScatter pays for
its excessive splitting in the form of longer flow completion times.
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Figure 9: Fraction of flows split (top) and average number of
subflows per flow (bottom) by LocalFlow for different numbers
of outgoing links, compared to other protocols, using a 3914-
second trace from a real datacenter switch.

7.5 Smaller scheduling intervals improve per-
formance, up to a limit

The previous experiments suggest that real workloads contain
many short-lived flows. This is partly due to small flows, but even
larger flows can complete in under a second in high-bandwidth
datacenters. In order to adapt quickly to these workloads, small
scheduling intervals are necessary.

To measure the effect of scheduling interval size, we used a 128-
host FatTree network running a random permutation with closed-
loop flow arrivals. Flow sizes were selected from the VL2 dataset
as before. Figure 10 shows the total throughput relative to ECMP
for different scheduling intervals. Both Hedera and LocalFlow im-
prove with smaller intervals, increasing 46% and 105%, respec-
tively, as the interval is decreased from 1s to 1ms. LocalFlow’s
improvement is dramatic: it outperforms MPTCP at 10ms and, re-
markably, outperforms PacketScatter at 1ms by over 7.7%. Hedera
never outperforms MPTCP and its improvement is more gradual.
This is partly due to the problem of overscheduling small flows, as
we observed in Figure 7.3 Of course, Hedera’s centralized batch
coordination makes such small intervals infeasible; Raiciu et al.
experimentally evaluated Hedera with Ss intervals and argued ana-
lytically that, at best, 100ms intervals may be achievable.

The fact that LocalFlow outperforms PacketScatter is significant:
it shows that splitting every flow can be harmful, since it exacer-
bates reordering. In contrast, LocalFlow does not split flows that
start and finish within a scheduling interval.

7.6 Spatial splitting outperforms temporal

LocalFlow uses a precise, spatial technique to split an individual
flow—based on either flowlets or counters—that is oblivious to the
timing characteristics of the flow. Thus, it achieves accurate load
balancing despite traffic unpredictability, unlike temporal splitting
techniques like FLARE. Load imbalances may arise in other tech-
niques as well, such as Hedera’s use of bandwidth reservations, or
the random choices of stateless PacketScatter and its variants [15].

Our experiments showed that even slight load balances can sig-
nificantly degrade throughput, especially for workloads that sat-
urate the network’s core. For example, we ran LocalFlow on a

3We note that our results are slightly different from those reported by Raiciu et al. [39,
Fig. 13]. We believe this is due to their coarser approximation of the VL2 distribution.
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Figure 11: Throughputs for LocalFlow and PacketScatter flows
using spatial (S) vs. temporal (T) splitting.

128-host FatTree network using a random permutation, but chose
an outgoing link at random for each packet (according to the split-
ting ratios), instead of based on the packet’s sequence number. We
also ran a stateless variant of PacketScatter, which selects a ran-
dom outgoing link for each packet. Both of these schemes simulate
temporal splitting because they achieve the desired splitting ratios
on average in the long term, but due to randomness, exhibit load
imbalances in the short term.

Figure 11 shows the results. The average throughput of flows
using LocalFlow drops by 17% with temporal splitting; Packet-
Scatter’s performance drops by 14%. We also tested the effect of
using a larger flowlet size with LocalFlow (the results that follow
do not apply if counters are used to implement subflow splitting).
Recall from §5.1 that flowlets facilitate finer splitting downstream,
so higher switches in the FatTree should use smaller flowlets than
lower switches. If instead we use a flowlet size of + =4 MSS at all
switches, LocalFlow’s performance drops by 31% with temporal
splitting. This is because the penalty of imprecise load balancing is
higher when the scheduling unit is larger.

Itis interesting that LocalFlow’s performance itself drops slightly
when using a larger flowlet. The reason for this is fundamental:
even though splitting is spatial within a flow, the presence of other
flows in the network introduces some temporal randomness. This
causes occasional bursts of flowlets from different flows on the
same outgoing link. In fact, one of our modifications to htsim was
to fix a bug in the existing implementation of PacketScatter, where
an incorrect ordering of loops resulted in flowlets of size larger
than 1 between edge/ToR and aggregation switches (instead of true
packet spraying), causing similar performance degradations.



7.7 LocalFlow handles reordering and com-
pletion time better than PacketScatter

A major concern with splitting flows is that it may lead to in-
creased packet reordering. Fortunately, we found that by simply in-
creasing the dup-ACK threshold of end hosts’ TCP, we could elimi-
nate the adverse effects of reordering. For example, in the previous
experiments, using a dup-ACK threshold of >15 for LocalFlow and
PacketScatter (instead of the default of 3) is sufficient. One could
also vary the threshold dynamically, as in RR-TCP [46], although
we did not find this to be necessary in our experiments.

Although a higher dup-ACK threshold benefits both LocalFlow
and PacketScatter, LocalFlow gains an advantage by splitting many
fewer flows in practice. As Figure 9 shows, LocalFlow splits fewer
than 4.3% of flows on a real datacenter switch trace. Put differently,
over 95.7% of flows were not split and hence incurred no additional
reordering. Further, small flows that complete inside a scheduling
interval are not split by LocalFlow; this gave LocalFlow a through-
put advantage over PacketScatter in Figure 10, where the workload
involved flow sizes from the VL2 distribution.

We now consider flow completion time, which is sensitive to re-
ordering. Recall that Figure 7 tests a heterogeneous VL2 work-
load with thousands of simultaneous flows that are mostly smaller
than 125KB. As the figure shows, the average flow completion time
of all variants of LocalFlow is lower than ECMP, while delivering
higher throughput. In contrast, although PacketScatter also deliv-
ers higher throughput, its average completion time is 10.4% higher
than ECMP. MPTCP performs even worse at 28.7% higher than
ECMP, likely due to its overhead from splitting small flows.

8. DEPLOYMENT CONCERNS

We discuss some considerations that should be made before de-
ploying LocalFlow in a real datacenter network. These involve
the network architecture and hardware, end-host TCP, and traffic
workload. Some of these issues have been discussed in previous
sections; we include them here for completeness.

Network architecture. LocalFlow is designed for symmetric net-
works. If the target network is asymmetric, LocalFlow may not
achieve optimal routing. Asymmetry can arise by design, for ex-
ample if the network has variable-length paths (e.g., BCube [21]),
or it may arise due to hardware failures, such as a faulty link that
operates at a lower rate (e.g., 100Mbps instead of 1Gbps). Raiciu et
al. [39] analyzed these scenarios and showed that MPTCP’s linked
congestion control adapts well to asymmetry. LocalFlow can also
cope with failures and asymmetry (see §4.3), but cannot guarantee
good performance in these settings. Splitting a flow over unequal
paths poses additional concerns not addressed in [39]; for example,
it requires more buffering at the destination as packets from faster
paths arrive out-of-order. This consumes memory proportional to
the flow rate times the latency difference between the paths.

Switch implementation. The choice of switch implementation is
critical to LocalFlow’s performance. While implementing Local-
Flow in a software switch is relatively straightforward,* limitations
in software packet processing produce suboptimal results. Unlike
hardware line-rate forwarding, software switching requires the NIC
to interrupt the processor when packets are available. Under heavy
load, the operating system uses interrupt coalescing to reduce sig-
nal handling overhead. However, this induces unpredictable for-
warding delay which can increase packet reordering for split flows.
Flow-steering in multi-queue NICs exacerbates the problem by di-

4Modifying the Open vSwitch [36] software switch to split flows using the TCP se-
quence number technique requires less than 100 LoC.

recting flows to different CPU cores, leading to further packet in-
terleaving. This is why our design assumes hardware switches.
Some recent studies [14, 24] paint a bleak picture of the per-
formance of hardware OpenFlow switches, complaining that they
handle only tens of flow setups per second and have scarce, power-
hungry TCAMs. However, both these switches and the OpenFlow
specification become faster and support more complex features ev-
ery year. For example, high-end NoviFlow switches [35] have over
1 million TCAM entries, handle 1000 flow setups per second, and
support OpenFlow 1.3 [37]. Though more expensive than commod-
ity switches, they indicate that hardware support for LocalFlow’s
splitting techniques is around the corner. Recall that LocalFlow
only requires TCAM entries for the few flows that are actually split.

End-host TCP. Since LocalFlow may cause additional packet re-
ordering in flows that are split, the dup-ACK threshold of end-host
TCP must be increased (as in our simulations) to avoid spurious
fast retransmissions and congestion window collapse. Since TCP
counts the number of reordered packets, the faster the network, the
higher this threshold needs to be. Through its decomposition of
the MCF problem, LocalFlow is compatible with other variants of
TCP, such as those that use DSACK to detect spurious congestion
signals and/or adjust the dup-ACK threshold dynamically [8, 46].

Workloads. As we have explained, LocalFlow’s design enables it to
cope with highly dynamic traffic patterns, even though it’s schedul-
ing decisions are based on measurements from the previous inter-
val. By setting the § slack appropriately, small, latency-sensitive
flows can be efficiently scheduled without ever being split.

Since LocalFlow relies on TCP to adjust flow send rates, the
presence of unregulated traffic such as UDP flows can degrade its
optimality guarantee. UDP does not perform congestion control or
guarantee ordered delivery. LocalFlow can accommodate the latter
problem by preventing UDP flows from being split—for example,
by using a policy in function BINPACK that places (unsplit) UDP
flows before (splittable) TCP flows. However, the former prob-
lem is fundamental and means that a UDP flow can easily gain
more than its fair share of bandwidth. This affects any flow rout-
ing scheme, including MPTCP, Hedera, and ECMP. To co-exist
fairly with TCP flows, UDP flows must either be subject to user-
space congestion control, encapsulated by an aggregate end-host
TCP flow (as in Seawall [41]), or placed in per-flow or per-class
switch queues that are rate-limited along its path. The latter is a
straightforward extension of LocalFlow, but such quality-of-service
controls have limited support in commodity switches.

9. CONCLUSIONS

This paper introduces a practical, switch-local algorithm for rout-
ing traffic flows in datacenter networks in a load-aware manner.
Compared to prior solutions, LocalFlow does not require central-
ized control, synchronization, or end-host modifications, while in-
curring modest forwarding table expansion. Perhaps more impor-
tantly, LocalFlow achieves optimal throughput in theory, and near-
optimal throughput in practice, as our extensive simulation analysis
shows. Our experiments revealed several interesting facts, such as
the benefits of precise, spatial splitting over temporal splitting, and
the impact of reordering on flow completion times.
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