
Aggregation and Degradation in JetStream:
Streaming analytics in the wide area

Ariel Rabkin, Matvey Arye, Siddhartha Sen∗, Vivek S. Pai, and Michael J. Freedman
Princeton University

Abstract
We present JetStream, a system that allows real-time

analysis of large, widely-distributed changing data sets.
Traditional approaches to distributed analytics require
users to specify in advance which data is to be backhauled
to a central location for analysis. This is a poor match
for domains where available bandwidth is scarce and it is
infeasible to collect all potentially useful data.

JetStream addresses bandwidth limits in two ways, both
of which are explicit in the programming model. The sys-
tem incorporates structured storage in the form of OLAP
data cubes, so data can be stored for analysis near where
it is generated. Using cubes, queries can aggregate data
in ways and locations of their choosing. The system also
includes adaptive filtering and other transformations that
adjusts data quality to match available bandwidth. Many
bandwidth-saving transformations are possible; we dis-
cuss which are appropriate for which data and how they
can best be combined.

We implemented a range of analytic queries on web
request logs and image data. Queries could be expressed
in a few lines of code. Using structured storage on source
nodes conserved network bandwidth by allowing data
to be collected only when needed to fulfill queries. Our
adaptive control mechanisms are responsive enough to
keep end-to-end latency within a few seconds, even when
available bandwidth drops by a factor of two, and are
flexible enough to express practical policies.

1 Introduction
This paper addresses the problem of analyzing data that is
continuously created across wide-area networks. Queries
on such data often have real-time requirements that need
the latency between data generation and query response to
be bounded. Existing stream processing systems, such as
Borealis, System-S, Storm, or Spark Streaming [2, 6, 29,
32], address latency in the context of a single datacenter
where data streams are processed inside a high-bandwidth
network. These systems are not designed to perform well
in the wide area, where limited bandwidth availability
makes it impractical to backhaul all potentially useful
data to a central location. Instead, a system for wide-area

∗Current affiliation: Microsoft Research

analytics must prioritize which data to transfer in the face
of time-varying bandwidth constraints.

We have designed and built such a system, called Jet-
Stream, that extends today’s dataflow streaming program-
ming model in two ways. We incorporate structured stor-
age that facilitates aggregation, combining related data
together into succinct summaries. We also incorporate
degradation that allows trading data size against fidelity.
Just as MapReduce helps developers by handling fault
tolerance and worker placement, JetStream aims to dras-
tically reduce the burden of sensing and responding to
bandwidth constraints.

Wide-area data analysis is a problem in a variety of con-
texts. Logs from content distribution networks and other
computing infrastructure are created on nodes spread out
across the globe. Smart electric grids, highways, and other
infrastructure also generate large data volumes. Much of
this data is generated “near the edge,” with limited net-
work connectivity over cellular or wireless links. Unlike
traditional sensor network deployments, many of these
infrastructure sensors are not energy limited, and can have
substantial co-located computation and storage.

Wide-area analysis also applies to data that does not
resemble traditional logs. Networks of video cameras are
used for a wide variety of applications. These include
not only urban surveillance but also highway traffic moni-
toring and wildlife observation. The cost of electronics,
including sensors, storage, and processors, is currently
falling faster than the cost of wireless bandwidth or of
installing new wired connectivity. As a result, bandwidth
is already becoming the limiting constraint in such sys-
tems [9] and we expect the gap between sensing capacity
and bandwidth to increase in the coming years.

In the examples above, a large amount of data is stored
at edge locations that have adequate compute and storage
capacity, but there is limited or unpredictable bandwidth
available to access the data. Today’s analytics pipelines
lack visibility into network conditions, and do not adapt
dynamically if available bandwidth changes. As a result,
the developer must specify in advance which data to store
or collect based on pessimistic assumptions about avail-
able bandwidth. The consequence is that bandwidth is
typically over-provisioned compared to average usage,
and so capacity is not used efficiently.

1

JetStream’s goal is to enable real-time analysis in this
scenario, by reducing the volume of data being trans-
ferred. Storing and aggregating data where it is gen-
erated helps, but does not always reduce data volumes
sufficiently. Thus, JetStream also includes degradations.
These are data transformations analogous to “lossy” com-
pression: they reduce data size at the expense of accuracy.
Examples include computing per-minute aggregates for
queries requesting per-second data, or dropping some frac-
tion of the data via sampling. Since degradations impose
a (tunable) accuracy penalty, JetStream is designed to
monitor available bandwidth and use the minimal degree
of degradation required to keep latency bounded.

Integrating aggregation and degradation into a stream-
ing system required us to address three main challenges:

(1) Incorporating storage into the system while support-
ing real-time aggregation. Aggregation for queries with
real-time requirements is particularly challenging in an
environment where data sources have varying bandwidth
capacities and may become disconnected. JetStream inte-
grates structured storage as a first-class abstraction in its
programming model, allowing aggregation to be specified
in a flexible but unified way.

(2) Dynamically adjusting data volumes to the available
bandwidth using degradation mechanisms. Such adapta-
tion must be performed on a timescale of seconds to keep
latency low.

(3) Allowing users to formulate policies for collecting
data that maximize data value and that can be imple-
mented effectively by the system. The policy framework
must be expressive enough to meet the data quality needs
of diverse queries. In particular, it should support com-
bining multiple degradation mechanisms.

In meeting these challenges, we created the first wide-
area analysis system that adjusts data quality to bound the
latency of streaming queries in bandwidth-constrained
environments. Our architecture decouples bandwidth
sensing from the policy specifying how to aggregate and
degrade the data to guarantee a timely response. The inter-
faces defined by our architecture support a wide-range of
sensing methods and response techniques—for example,
we implemented a diverse set of degradations, including
those using complex data structures and multi-round pro-
tocols. We consider our architecture and its associated
interfaces to be the key contribution of this paper.

By ignoring bandwidth limitations, previous systems
force users to make an unappealing choice: they can be
optimistic about available bandwidth and backhaul too
much data, leading to buyer’s remorse if bandwidth is
costly; or they can be pessimistic about bandwidth and
backhaul only limited data, leading to analyst’s remorse
if a desired query cannot be answered. By integrating
durable storage into the dataflow and supporting dynamic
adjustments to data quality, JetStream allows a user to fo-

cus on fundamentally different trade-offs: deciding which
query results are needed in real-time and which inaccura-
cies are acceptable to maintain real-time performance.

2 Design Overview
JetStream is designed for near-real-time analysis of chang-
ing data, such as log data or audiovisual data. The system
integrates data storage at the edge to allow users to col-
lect data that may be useful for future analysis without
necessarily transferring it to a central location. Users can
define ad-hoc queries (“give me the video from camera
#129 between 6am and 7am last night”) as well as stand-
ing queries (“send a down-sampled copy of the video data
from every camera back to a control center” or “tell me the
top-10 domains by number of requests over 10 seconds”).
Standing queries can be useful in and of themselves or
they can be used to create centralized data structures to
optimize the performance of common queries.

Standing queries are considerably more challenging
than ad-hoc queries, and therefore are the focus of this
paper. A standing query has a hard real-time requirement:
if the query cannot handle the incoming data rate, then
queues and queuing delays will grow, resulting in stale
results. Giving users fresh results means that the system
must keep latency bounded. This bound must be main-
tained even as the incoming data volume and the available
bandwidth fluctuate.

Since JetStream aims to provide low-latency results on
standing queries, it borrows the basic computation model
of many of today’s stream-processing systems. A worker
process runs on each participating compute node. A query
is implemented by a set of linked dataflow operators that
operate on streams of tuples. Each operator is placed on
a particular host and performs some transformations on
the data. The system routes tuples between operators,
whether on the same host or connected by the network.

2.1 Integrating structured storage
In a departure from previous stream processing systems,
we integrate structured storage inside the operator graph.
This storage lets us keep data where it is generated until it
is needed. In our vision, nodes at the edge of the network
can store hours or days worth of data that the user does
not need to immediately analyze, but which may (or may
not) be required later.

Because edge storage can involve large data volumes,
we use structured storage to reduce query times. Past
streaming systems incorporated storage in the form of
a durable buffer of input tuples [2]. This would per-
form poorly for ad-hoc queries, since it would require
re-scanning all stored data on every query. We instead
adopt the data cube abstraction previously used in OLAP
databases [15], which supports queries efficiently. We
discuss our use of cubes in detail in Section 3.

2

Coordinator(
Daemon(

Control(plane(

Data(plane(

Query(graph(Type(checking(

Client(
Library(User(

Worker((
Node(

Data(
Source(

Graph(placement(

Data(
Cube(Operator(

Figure 1: JetStream’s high-level architecture. Users
define query graphs with operators and cubes. A co-
ordinator deploys the graph to worker nodes.

Integrating structured storage allows us to simplify
other operators, enabling more graceful handling of miss-
ing or delayed data. Previous streaming systems defined a
large set of stateful operators, including Sort, Aggregate,
Join, and Resample [2]. When made stateful, each of
these operators requires complex semantics to cope with
missing inputs. In comparison, in our design, cubes are
the only element with durable state and the only place
where streams are merged, and so subsume the function-
ality of these operators. They are responsible not only for
storage, but also for aggregation inside queries.

We opt for stream equi-joins over general joins, since
general joins across streams would impose a global syn-
chronization barrier, causing excessive latency when links
are congested or disabled. We have not found the lack of
a general join to be a serious limitation. Cubes can handle
stream equi-joins from an arbitrary number of streams
and this has been enough for us in practice.

2.2 Reducing data volumes

Operators can apply lossy transformations that reduce
data volumes. For example, they can randomly sample
tuples from a stream, or drop all tuples with values below
a threshold. To maximize data quality, it is desirable to ap-
ply data reduction only when necessary to conserve band-
width. JetStream therefore includes specialized tunable
degradation operators. The system automatically adjusts
these operators to match available bandwidth, thus mini-
mizing the impact on data quality. These mechanisms are
described in Section 4.

Because the system dynamically changes degradation
levels, it needs a way to indicate the fidelity of the data it
is sending downstream. Therefore, we added the ability
for operators to send metadata messages both upstream
and downstream. Metadata messages are ordered with
respect to data messages and act as punctuations [30].
This mechanism is broadly useful in the system: we use
it to signal congestion and also to implement multi-round
protocols within the operator graph (see Section 5).

Class Operators

I/O FileReader, Echo, FileWriter, UnixCmd
Parser CSVParser, RegexParser
Filter Grep, LessThan, Equals
Map ExtendTupleWithConst, Project, AddTimestamp,

URL2Domain, Histogram2Quantile
Degradation VariableSubscriber, DegradeHistogram, Sampling

Table 1: Examples of the operators currently pro-
vided by JetStream’s client library.

2.3 Programming model
Operator graphs are constructed using a client library.
The library’s programming interface makes it convenient
to configure operators and data cubes and to link them
together into dataflow graphs. The system includes a
library of pre-defined operators, and users can also de-
fine their own operators using a library of base classes.
These base classes streamline development for common
operator functionality such as map and filter, which both
require implementing a single virtual function. We list
some examples in Table 1 to give the flavor of the tasks
operators perform. We discuss the details of the system
architecture and implementation in Section 6.

Figure 2 gives a simple example of our programming
model. Suppose there is a set of N nodes, each with a
directory full of images. Over time, a camera adds data
to this directory. The system will scan the directory and
copy new images across the network to a destination,
tagging each with the time and hostname at which it
was created. In this example, placement is explicit: the
semantics of the application requires that the readers are
on the source nodes and that the result is produced at the
union node. If there had been intermediate processing,
the programmer could have let the system handle the
placement of this computation. Later in the paper, we will
extend this example to cope with insufficient bandwidth;
we offer it here to give a sense of the programming model.

JetStream is primarily an execution engine, more
like the Dryad or MapReduce engines than like the
DryadLINQ or Pig languages [10, 20, 24, 31]. If in the fu-
ture a widely-accepted declarative programming language
for stream processing emerges, we expect that JetStream
should be able to support it.

3 Aggregation
Integrating structured storage into a streaming operator
graph solves several problems. Cubes, unlike key-value or
general relational models, have unambiguous semantics
for inserting and aggregating data. This lets JetStream
handle several different forms of aggregation in a unified
way. Windowed aggregation combines data residing on
the same node across time. For example, all web request

3

g = QueryGraph()
dest = Operators.StoreImages(g, IMAGE_OUT_DIR)
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
g.chain([reader, add_time, add_host, dest])

Figure 2: Example code for a query. Each source
node has an image reader connected by a chain of op-
erators to a common destination operator.

records for the same second can be merged together to
produce a per-minute request count. Tree aggregation
combines data residing on different nodes for the same
period. This can be applied recursively: data can be
grouped within a datacenter or point of presence, and
then data from multiple locations is combined at a central
(“union”) point. Both these forms of aggregation are
handled in JetStream by inserting data into structured
storage and then extracting it by appropriate queries.

While JetStream borrows the cube interface from
OLAP data warehouses, we substitute a different imple-
mentation. Cubes in data warehouses typically involve
heavy precomputation. Many roll-ups or indexes are con-
structed, incurring high ingest times to support fast data
drill-downs. In contrast, JetStream uses cubes for edge
storage and aggregation and only maintains a primary-key
index. This reduces ingest overhead and allows cubes to
be effectively used inside a streaming computation.

Integrating storage with distributed streaming requires
new interfaces and abstractions. Cubes can have multi-
ple sources inserting data and multiple unrelated queries
reading results. In a single-node or datacenter system it is
clear when all the data has arrived since synchronization
is cheap. In a wide-area system, however, synchronization
is costly, particularly if nodes are temporarily unavailable.
In this setting, queries need a flexible way to decide when
a cube has received enough data to send updates down-
stream. Our context also requires cubes to deal with late
tuples that arrive after results have been emitted. Before
explaining how we solve these problems, we describe our
storage abstraction in more detail.

3.1 Data Cubes and Their API
A data cube is a multi-dimensional array that can encapsu-
late numerical properties and relationships between fields
in structured input data, similar to a database relation. It
is defined by a set of dimensions, which specify the coor-
dinates (the key) of an array cell, and a set of aggregates,
which specify the statistics (values) stored in a cell.

Suppose for example that we are collecting statistics
about traffic to a website. We might define a cube with
dimensions for URLs and time periods. The cube would

g = QueryGraph()
dest = Cube(g, "stored_images")
dest.add_dimension(TIME, "timestamp")
dest.add_dimension(HOSTNAME, "timestamp")
dest.add_aggregate(BLOB, "img_data")
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
g.chain([reader, add_time, add_host, dest])

Figure 3: Running example but with the destination
now a cube.

then map each unique pair of URL and time period to
a cell with a set of aggregates, such as the total num-
ber of requests and the maximum request latency. Each
web request, when added to the cube, updates the cell
corresponding to its URL and time period.

A query can slice a cube to yield a subset of its val-
ues, such as “all URLs starting with foo.com ordered by
total requests.” A query can roll up a slice, aggregating
together the values along some dimension of the cube,
such as asking for the total request count, summed across
all URLs in the slice. Roll-ups use the same aggregation
function as insertion. Whereas insertion potentially aggre-
gates data at write time, a roll-up performs aggregation
at query time. Aggregate functions must be deterministic
and order-independent (i.e., max and average, but not
last-k tuples); this means that the system need not
worry about the ordering between inserts.

Aggregates can be more complex than simple integers.
A cube cell can include a histogram or sketch, describing
a whole statistical distribution. (This relies on the fact that
the underlying sketches or histograms can be combined
straightforwardly, without loss of accuracy.) One might,
for instance, build a cube not merely of request counts
over time, but directly representing the distribution of
latencies over time. This allows a query to do powerful
statistical processing, such as finding quantiles over ar-
bitrary subsets of events. Histograms and sketches are
fixed-size, regardless of the underlying data size; they are
an especially compact form of aggregation.

The cube abstraction is powerful enough to directly
express all the aggregation we need in JetStream. Win-
dowed operations (such as moving averages) are repeated
roll-ups over a time-varying slice of the cube. Both sliding
windows and tumbling windows fit into this model.

Even when data is not aggregated together, a data cube
is a useful storage abstraction that allows queries on mul-
tiple attributes. For example, Figure 3 shows how a cube
can be integrated into our running example. Each im-
age frame is stored as an aggregate, with the timestamp
and source hostname as dimensions. This allows queries
based on any combination of time and source. (Modern

4

video encoding does not store each frame separately. A
more complex example might store short segments of
video data in cube cells. Alternatively, a more complex
implementation of the cube API might offer programmers
the abstraction of a sequence of frames, while using a
differential coding scheme underneath.)

Many implementations of the cube abstraction are pos-
sible; ours uses MySQL as the underlying data store. This
allows us to leverage MySQL’s optimizations for handling
large data volumes as well as its support for transactions.
Transactions greatly simplify failure recovery, as we ex-
plain in Section 6.

3.2 Integrating Cubes with Streaming

While the semantics of inserting data into the cube is
straightforward (“apply the aggregation function”), ex-
tracting data from cubes is not. A query needs to make
a policy decision of when and how often to read data
from a cube. This decision affects the latency, bandwidth
consumption, and completeness of results. In JetStream,
these policies are encapsulated in specialized operators
called subscribers.

Aggregation trades latency for bandwidth. The longer
a query waits before reading the aggregate, the more data
potentially can be aggregated into a fixed-size summary,
reducing data volumes at the price of latency. There is
also a trade-off between latency and completeness. It may
not be worth waiting for stragglers before emitting a result.
(As discussed below, the system can sometimes correct
an inaccurate result later.) In the local area, stragglers can
be masked by speculative execution or retries [10]. In the
wide area, this strategy is unable to compensate for late
data caused by limited bandwidth or connectivity.

We allow users to tune these trade-offs by giving sub-
scriber operators fine-grained control over when to emit
the results of aggregation. Subscribers have a richer API
than other operators. They are notified whenever a tuple
is inserted into the cube. They can also query the cube for
slices and rollups. This allows fairly complex policies. A
subscriber might repeatedly query for the last 10 seconds
of data, relative to the system clock. Or it might track the
highest timestamp from each source feeding into the cube,
and only query up to the point which all the sources have
reached. The default policy in JetStream combines these
two policies: if all sources have contributed data, the re-
sult is emitted immediately. Otherwise, the subscriber has
a fixed timeout before emitting results. Like all operators,
the parameters of a subscriber can be adjusted by the user.

If an update arrives at a cube that would modify a result
that has already been emitted by a subscriber, that update
is termed backfill. Because cubes are the location where
data is joined, the general problem of late updates only
appears in JetStream as backfill at cubes.

We handle backfill using similar techniques to prior
stream-processing work [2]. A backfill update results
in a subscriber emitting a delta record that contains the
old and new values. Delta records propagate in the same
manner as new data. They can cause tuples to be revoked,
e.g., if an operator filters an update that was previously
allowed. The effect of a delta update on an aggregate
depends on the aggregation function. Some aggregates,
such as average, can retract an item that was previously
added. For other items retraction can be an expensive
operation. For example, max requires keeping a full list
of its inputs to enable updates that reduce the value of
the item with the largest value. Like Naiad [23], we only
allow such functions if backfill input is impossible or the
source data is available locally.

Subscribers are free to query the cube multiple times
and are part of the metadata flow. They can therefore
take part in nontrivial iterative protocols before emitting
data. We exploited the flexibility of this interface when
implementing a specialized subscriber that carries out a
multi-round filtering protocol for finding the global top-k
elements (by a user-determined ranking) over distributed
data, without transferring all data. This is discussed fur-
ther in Section 5.

3.3 Aggregation is Sometimes Insufficient
Not all queries aggregate well. For example, our running
example of streams of image data is a case where aggre-
gation is of limited value. There is no straightforward
way to combine images taken at different times or from
different cameras pointing at different scenes.

For data that can be aggregated in principle, the under-
lying data distribution may make aggregation ineffective
at saving bandwidth. Data where the distribution of ag-
gregate groups has a long tail will not aggregate well.
This can depend on the coarseness of aggregation. For
example, aggregating web requests by URL is ineffective
because the popularity of URLs is long-tailed [16]. Ag-
gregating the same data by domain can be much more ef-
fective, since domain popularity is less long-tailed. Figure
4 illustrates the point using data from the Coral content
distribution network [13].

4 Adaptive Degradation
Even with partial aggregation at sources, some queries
will require more bandwidth than is available. If there
is insufficient bandwidth, the query will fall ever farther
behind, as new data arrives faster than it can be processed.
To keep latency low, JetStream allows queries to specify
a graceful degradation plan that trades a little data quality
for reduced bandwidth. For example, audiovisual data can
be degraded by downsampling or reducing the frame rate.
Similarly, quantitative data can be degraded by increasing
the coarseness of the aggregation or using sampling. We

5

5s minute 5 m hour day

Aggregation time period

1

2

4

8

16

32

64

128

256
R

el
at

iv
e

sa
vi

ng
s

fr
om

 a
gg

re
ga

tio
n

URLs
Domains

Figure 4: For CoralCDN logs, domains aggregate ef-
fectively over time and URLs do not.

discuss techniques applicable to quantitative data in more
detail in Section 5.

Since degradations impose an accuracy penalty, they
should only be used to the extent necessary. JetStream
achieves this by using explicit feedback control [21].
Since wide-area networks can have substantial buffering
beyond our visibility or control, waiting for backpressure
to fill up queues incurs large delays and provides incom-
plete congestion information. By using explicit feedback,
JetStream can detect congestion before queues fill up,
enabling it to respond in a timely manner. Moreover,
this feedback reflects the degree of congestion, allowing
JetStream to tune the degradation to the right level.

JetStream’s congestion response is decentralized:
nodes react independently to their inferred bandwidth
limits. This avoids expensive synchronization over the
wide area, but it also means that sources may send data
at different degradation levels, based on their bandwidth
conditions at the time. Queries that aggregate data over
sources or time must therefore handle varying degradation
levels. We discuss how this is done for quantitative data
in §5.2.

JetStream achieves adaptive congestion control via
three components: (i) degradation operators that apply
data transformations to the data stream; (ii) congestion
monitors that measure the available bandwidth; and (iii)
policies that specify how the system should adjust the
level of degradation to the available bandwidth. Figure 5
illustrates the interaction between these three components;
we discuss each component in the following sections.

4.1 Degrading data with operators
Degradation operators can be either standard operators
that operate on a tuple-by-tuple basis, or cube subscribers
that produce tuples by querying cubes. A degradation
operator is associated with a set of degradation levels,
which defines its behavior on cubes or data streams. For
example, our variable subscriber offers the ability to
roll-up data across different time intervals (e.g., send-
ing output every 1, 5 or 10 seconds) and characterizes

this degradation in terms of the estimated bandwidth use
relative to the operator’s maximum fidelity (in this ex-
ample, [1.0, 0.2, 0.1]). This interface gives flexibility to
operators. Some operators have fine-grained response
levels, while others are widely spaced—for example, an
audiovisual codec might only support a fixed set of widely
spaced bitrates.

As we discuss in §5.1, many useful degradations have
a data-dependent bandwidth savings. The interface we
adopted gives operators flexibility in how they estimate
the bandwidth savings. Levels (and their step size) can
be (i) dynamically changed by the operator, e.g., based
on profiling, (ii) statically defined by the implementation,
or (iii) configurable at runtime (as with our currently
implemented operators).

4.2 Monitoring available bandwidth
JetStream uses congestion monitors to estimate the rela-
tive available capacity of the system, or the ratio between
the maximum possible data rate and the current rate. A
ratio greater than one indicates spare capacity, while less
than one indicates congestion. A congestion monitor is
attached to each queue in the system and allows the as-
sociated policy to determine whether the data rate can
be increased, or must be decreased, and by how much.
Congestion monitoring can be done in many ways; we
use two techniques in our prototype.

For detecting network congestion, we track the time
required to process data. Sources insert periodic metadata
markers in their output, specifying that the data since the
last marker was generated over k seconds. When a net-
work receiver processes this marker (which occurs after
all prior data tuples are processed), it sends an upstream
acknowledgment. The congestion monitor records the
time t between seeing the last marker and receiving this
acknowledgment, and uses k

t as an estimate of the avail-
able capacity. (A similar approach is used to adapt bitrates
in HTTP streaming [1].) The advantage of this approach
is that it gives a meaningful estimate of how much spare
capacity there is when the system is not yet congested.

For detecting bottlenecks in our storage implementa-
tion, we have a congestion monitor that uses differences
in queue lengths over time to extrapolate ingestion rate.
We cannot use the data window measurement to monitor
data cubes because cubes can batch writes. With batching,
performance is not linear with respect to the data volume
in each window. Queue monitoring can detect conges-
tion quickly, and the rate of queue growth indicates how
congested the system is. However, it does not indicate
how much spare capacity there is if the system is not
overloaded and the queue is empty.

Congestion monitors report their capacity ratio up-
stream, both to other congestion monitors on the same
host and across the network using a metadata message.

6

Os	
 C	
 O	

Pol	

CM	

O	
 C	
 RCV	

Worker	

Node	

Data	

Meta	

Data	

Worker	

Node	

Control	

CM	

Figure 5: JetStream’s mechanisms for detecting and
adapting to congestion. Along with cubes and opera-
tors, JetStream employs explicit application queues,
congestion monitors (CM), policy managers (Pol),
and network receivers (RCV) to control when adap-
tations should be performed.

g = QueryGraph()
dest = Cube(g, "stored_images")
dest.add_dimension(TIME, "timestamp")
dest.add_dimension(HOSTNAME, "timestamp")
dest.add_aggregate(BLOB, "img_data")
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
drop_frames = Operators.LowerFramerate()
downsample = Operators.Downsample(min=0.5)
g.chain([reader, add_time, add_host, drop_frames,

downsample, dest])
g.congest_policy([downsample, drop_frames])

Figure 6: Running example with a degradation pol-
icy added: downsampling will be applied first, then
frame-rate lowering.

When a monitor is queried, it returns the minimum of its
own and the downstream ratio. In this way, congestion
signals propagate to sources in a multi-step pipeline.

4.3 Congestion response policies
Congestion response policies tune degradation operators
based on the available bandwidth reported by congestion
monitors. To effectively control data volumes while min-
imizing errors, policies need to be able to tune multiple
degradation operators.

Oftentimes, a given degradation technique is only use-
ful up to a certain level of degradation. Rolling up request
logs from a 10-second level to a 30-second level may im-
pose an acceptable delay for a data analysis pipeline, but
waiting for longer periods of time may not. If the band-
width required at the largest-acceptable roll-up coarseness
is still too large, it is necessary to use some other tech-
nique, such as dropping statistics about unpopular items.

Consider the following policy: “By default, send all
images at maximum fidelity from CCTV cameras to a
central repository. If bandwidth is insufficient, switch to
sending images at 75% fidelity, then 50% if there still
isn’t enough bandwidth. Beyond that point, reduce the
frame rate, but keep the images at 50% fidelity.” This pol-
icy involves two degradation operators: one to decrease

image fidelity (F), and one to drop frames (D). As the
system encounters congestion, F should respond first, fol-
lowed by D once F is fully degraded. However, if capacity
becomes available, D should respond first, followed by F.
We say that F has higher priority than D.

Figure 6 shows our running example, modified with
this policy. The policy is represented in two parts. Each
degradation operator is configured with its maximum
degradation level. Because this is part of the operator
configuration, it can use operator-specific notions, such
as frame rates. A separate policy statement specifies the
priority of the operators. This policy statement is agnostic
to the semantics of the operators in question.

At runtime, each policy is encapsulated in a policy
object. Each policy object is attached to a particular con-
gestion monitor and the set of local degradation operators
that it manages. The operators periodically query the
policy with their available and current degradation levels
(per §4.1). The policy returns the degradation level the
operator should use, based on the current congestion ratio
and the state of the other operators.

Importantly, an operator’s priority is unrelated to the
operator’s position in the dataflow graph. In this example,
the dataflow structure does per-frame degradation after
frame dropping, to avoid wasted computation on frames
that will later be dropped. This is irrespective of which
operator has higher priority in the policy.

Our framework can be extended to cope with still-more-
complex policies. One might, for instance, desire policies
that apply two different degradations simultaneously, such
as interleaving time-roll-up steps with some other degra-
dation operation.

5 Degrading Quantitative Data

Above, we discussed the abstractions that JetStream pro-
vides for data degradation. We now discuss how these
abstractions can be used to degrade quantitative analytics
data. While the techniques we describe are mostly well-
known, we evaluate them in the new context of wide-area
streaming analytics.

A wide range of degradations are possible for quantita-
tive data. Here are some that JetStream supports:

• Dimension coarsening: A subscriber that performs
roll-ups of data cube dimensions. To reduce output
size, the subscriber emits progressively coarser data.
For example, rolling up per-second data to output per-
minute data or rolling up URLs to the domain level.

• Local value threshold: A filter that only forwards
elements whose value is above a (tunable) threshold on
a particular node. For example, only passing Apache
request log entries where the latency of the request
exceeded 1 second.

7

• Global value threshold: A filter that only forwards
elements whose total value, across all nodes, is above
a threshold. This is implemented using a multi-round
distributed protocol [7]. For example, one can create
a filter that only keeps the top 1000 URLs requested
across a CDN in a 10-second window.

• Consistent sampling: Drops a fraction of inputs
based on the hash of some dimension. Two filters
with the same selectivity will pass the same elements.

• Synopsis approximation: Replaces a histogram,
sketch, or other statistical synopsis with a less accurate
but smaller synopsis.

5.1 Which degradations to use?

The best degradation for a given application depends not
only on the statistics of the data, but also on the set of
queries that may be applied to the data. As a result, the
system cannot choose the best degradation without know-
ing this intended use. We leave for future work the chal-
lenge of automatically synthesizing a degradation strategy
based on the data and a set of potential queries or other
downstream uses of the data. Here, we offer some guide-
lines for data analysts on which degradations to use for
different circumstances.

• For data with synopses that can be degraded, such as
histograms or sketches, degrading the synopsis will
have predictable bandwidth savings and (for some syn-
opses) predictable increases in error terms.

• If the dimension values for the data have a natural
hierarchy, then aggregation can effectively reduce the
data volume for many distributions. This is particularly
applicable to time-series data. As we discussed in §3.3,
coarsening is ineffective on long-tailed distributions,
however.

• A long-tailed distribution has a small number of highly
ranked “head” items, followed by a long tail of low-
ranked items. Many queries, such as “top k items” only
concern the head. In these cases, a filter can remove
the large-but-irrelevant tail. (Note that this depends on
the user’s subsequent plans for the data, and not just
the statistics of the data itself.) Either a local or global
value threshold is applicable here.

• A global value threshold gives exact answers for every
item whose total value is above a threshold; a local
threshold will have worse error bounds, but can do
well in practice in many cases. (We demonstrate this
empirically in Sec. 7.3.)

• Consistent samples help to analyze relationships be-
tween multiple aggregates. For example, to analyze the
correlation between hit count and maximum response
latency in a CDN, a query can sample from the space

of URLs. This yields exact values for the aggregates
of all the URLs in the sample.
One would like degradation operators to have a pre-

dictable bandwidth savings, so that JetStream can pick
the appropriate degradation level. One would also like
degradations to have predictable effects on data quality,
so that users can reason about the errors introduced. Most
degradation operators have only one or the other of these
properties, however. Because no one degradation is op-
timal, we took pains to allow compound policies. As a
result, users can specify an initial degradation with good
error bounds, and a fall-back degradation to constrain
bandwidth regardless.

5.2 Merging heterogeneous data
As we discussed above, degradation levels will vary over
time, and will vary across different nodes feeding into
a cube at the same time. It is therefore desirable to be
able to combine data of different fidelities without paying
an additional penalty. We call this property mergeability.
Formally, we define mergeability as the ability to combine
data of different fidelities so that the merged result has the
same error bounds as the input with the lowest fidelity.1

Mergeability constrains the ways in which data can be
approximated and analyzed. Suppose that two sources are
sending data every five seconds to a central point. One
source then switches to sending data every six seconds.
To represent the merged answer accurately, the data must
be further coarsened, to every 30 seconds. This implies
that the system sent 5.5x more data than it needed to if
both sources had simply sent every 30 seconds.

Mergeability guided several design choices in Jet-
Stream. Dimension coarsening is only mergeable if the
coarsening steps are consistent and strictly hierarchical.
We therefore define an explicit hierarchy for time dimen-
sions. Cubes can store (and subscribers can roll up) time
only in fixed intervals. (The first layers of the hierarchy
are 1, 5, 10, 30, and 60 seconds.) We also require slices
to start at a timestamp that is a multiple of the query’s
step size. Taken together, these requirements make time
coarsening mergeable.

Mergeability constrains other degradations besides di-
mension coarsening. Histograms are an effective approxi-
mation for computing quantiles. Making our histogram
implementation mergeable required careful programming.
In our implementation, every division between buckets in
an n-bucket histogram is also a division in an n+1 bucket
histogram, and consequently histograms are mergeable
regardless of the number of buckets.

Some degradations are intrinsically not mergeable. As
an example, consider web request data generated at two
servers. Lets analyze the top-k request counts by URL

1This definition is stronger than that typically used in the theory
streaming literature, which covers merging data of the same fidelity [3].

8

at both servers, so that we sum the counts for any URLs
common to both. For such a query, the top-k lists from
each server cannot be merged together.2 Similarly, for per-
minute top-k lists, there is in principle no way to compute
a daily top-k. For the same reasons, sets with a value
cutoff (“elements with value above x”) cannot always be
merged to give a correct set with a new value cutoff. This
is tolerable in practice for applications that do not need
to perform roll-ups, or where the data distribution is such
that the error bounds are small. A global filtering protocol,
such as the multi-round protocol supported by JetStream,
can give correct results when data is spread across many
sources.

6 Architecture and Implementation
JetStream’s architecture has three main components:
worker daemons access and process data on a distributed
set of nodes, a coordinator daemon distributes computa-
tion across available workers, and a client library defines
the computation to be performed and provides an interface
to the running system.

The life-cycle of a query: A query starts when a client
program creates a dataflow graph and submits it for exe-
cution. The library checks the dataflow graph for type and
structural errors, such as integer operators being applied
to string fields or filter operators with no inputs. The
graph is then sent to the coordinator, which chooses the
assignment of operators to worker nodes. The placement
algorithm attempts to minimize the data traversing wide-
area networks, placing operators on the send-side of the
link whenever possible.

After determining operator placement, the coordinator
sends the relevant subset of the graph to each node in the
system. The nodes then create any necessary network
connections amongst themselves, and start the operators.
The query will keep running until it is stopped via the
coordinator, or until all the sources send a stop marker
indicating that there will be no more data. As discussed
above, degradation is handled in a decentralized fash-
ion, and the coordinator’s involvement is not required to
maintain a running query.

Implementation: The JetStream coordinator is imple-
mented in about 2000 lines of Python, and is purely mem-
ory resident. The worker is implemented in a single pro-
cess, similar to a database management system. The
worker is about 15,000 lines of C++, including 3000 for
system-defined operators. Operators are implemented as
C++ classes, and can be dynamically loaded. Within a
node, each chain of operators from a source operator or
network link is executed sequentially, without queuing,

2Fagin et al [11] prove that it is not generally possible to find the top
k1 elements and their exact values using only the top k2 from each of
the subsets, for any fixed k2 (see their example 4.4).

by a single thread at a time. All tuples are processed
sequentially in the order received.

Failure Recovery: In a streaming system, failure recov-
ery requires two things: Each failed piece of the compu-
tation (e.g., each query operator on a failed node) must
be restarted and reattached to the graph. Additionally,
for stateful pieces of the computation, their state must
be restored to what it would have been absent the failure.
JetStream currently only does the former. The latter can
be implemented within our model but is a lower priority
for us than for datacenter streaming systems.

The coordinator has a complete view of which opera-
tors should be on each node, and therefore can restart them
when a node fails and recovers. This is implemented in
our existing prototype. Sources periodically try to recon-
nect to their destinations and therefore will automatically
recover when the failed node restarts. The coordinator’s
state can be made durable using group-consensus tools
like Zookeeper [18]. (This is not currently implemented.)

Unlike past streaming systems, we do not attempt
to make JetStream failure-oblivious. Datacenter-based
streaming systems rely on the presence of an underly-
ing reliable data store (such as a reliable message queue,
HDFS or BigTable) that is assumed to be always avail-
able [5, 29, 32]. Using this data store, these systems can
hide the existence of failures from computations, restart-
ing work immediately and carefully avoiding duplicated
or dropped data.

In wide-area analytics, failures cannot be hidden, since
data will be inaccessible if the network is partitioned. For
many analytic uses, users prefer queries that promptly sup-
ply approximate results based on the available data, and
revise these results as late data arrives [4]. (We discussed
how to incorporate these backfill updates in §3.2.) Thus,
the results of a computation will necessarily be affected
by failures. Retroactively changing the results to recover
completely from the failure is a low priority for us, since
enough time might have passed that the temporary results
have already been acted upon.

That said, it is possible to do precise failure recovery
in the JetStream model, as we sketch below. In the data-
center context, a number of failure recovery techniques
have been described. All these schemes have two ba-
sic ingredients: (i) The system must keep metadata to
track which tuples have been processed by each operator.
This metadata must be recorded atomically with the up-
date to ensure process-once semantics. (ii) There must
be a mechanism to retransmit the tuple until there is an
acknowledgment that it was fully processed by the chain.

Our system meets both these underlying requirements.
Since our underlying data store is a database, we already
have sufficient transaction support to atomically commit
updates along with the appropriate metadata. We could
add sequence numbers to tuples and use the fact that

9

Name Output Operators Cubes LoC BW ratio

1 Big requests Requests above 95th percentile of size, with per-
centiles computed for past minute.

3n + 8 3n + 3 97 22

2 Slow requests All requests with throughput less than 10 kbytes/sec. 4n + 2 1 5 24

3 Requests-by-URL Counts for each URL-response code pair. 3n + 2 n + 1 5 351

4 Success by domain The fraction of success responses for each domain. 6n + 4 n + 2 30 445

5 Quantiles 95th percentiles of response time and size, for each
HTTP response code.

4n + 5 n +1 25 715

6 Top-k domains Top-10 domains every five seconds. n + 3 n + 1 40 2300

7 Bad referrers The 10 domains most responsible for referrals that
led to a 404 response, every five seconds.

8n + 2 n + 1 16 18600

8 Bandwidth by node Overall bandwidth used by each node, over time. 4n + 2 n + 1 15 49800

Table 2: Complexity and efficiency of example queries. For operator and cube counts, n is the number of
data source nodes in the system. LoC is the number of non-comment lines of code needed to write the query,
not counting shared library code. Bandwidth ratio is the ratio between source input size and the data volume
transferred over the network (e.g., 22 means a factor-of-22 savings from aggregation and filtering).

tuples are not reordered between data cubes to make sure
that upstream cubes retransmit data to downstream cubes
until appropriate acknowledgments are received.

7 Evaluation
In this section, we evaluate four main questions about
JetStream’s design.

§7.1 Does JetStream make it easy to write distributed
analytic queries?

§7.1 How effectively do hierarchical aggregation and
static filtering reduce bandwidth consumption?

§7.2 What latency can JetStream maintain, in the pres-
ence of changing bandwidth limits?

§7.3 How well does JetStream’s adaptive degradation
work with complex policies?

Given JetStream’s focus on adapting bandwidth con-
sumption, we omit extensive performance benchmark-
ing and comparisons to existing streaming systems. The
throughput of JetStream is largely limited by the under-
lying database and serialization code, neither of which is
relevant to our technical contributions.

7.1 Expressivity and Efficiency
To evaluate the usability of JetStream’s programming
framework, we use it to ask a number of analytical ques-
tions about a dataset of CoralCDN logs. Table 2 summa-
rizes the eight queries we evaluate, drawn from our expe-
rience observing and managing CoralCDN. The queries
include summary counts, histograms, filtered raw logs,
top-k queries, and outlier detection.

Our aim is to understand (i) if these questions can be
expressed succinctly in JetStream’s programming model,
and (ii) if many of our queries, even before applying data

degradation techniques, experience significant bandwidth
savings by storing data near where it is generated.

To test the queries, we select logs from 50 nodes in
CoralCDN for January 20, 2013, and transfer each log
to a node on the VICCI testbed [26]. To emulate wide-
area clusters of CDN nodes, we select 25 VICCI servers
from each of the MPI-SWS and Georgia Tech sites (in
Saarbruecken, Germany, and Atlanta, GA respectively).
These nodes serve as the sources of data; the queries
produce their output at a node in Princeton, NJ. The total
size of these logs is 51 GB, or 140 million HTTP requests.
Since the logs are drawn from actual operational nodes,
they are not equal in size. The largest is approximately
2 GB, while the smallest is 0.4 GB. This sort of size
skew is a real factor in operational deployments, not an
experimental artifact.

We observe large savings compared to backhauling the
raw logs, ranging from a factor of 22x to more than four
orders of magnitude. The large gains are primarily due
to the partial aggregation present in all these examples.
Thousands of requests can be tallied together in source
cubes to produce a single tuple to be copied across the
wide area for merging at the union cube. This demon-
strates that edge storage and partial aggregation are valu-
able design choices in wide-area analytics.

Code size is small but varies across queries. We wrote
about 150 lines of shared code for processing command
line arguments, parsing and storing CoralCDN logs, and
printing results. These are shared lines of code and are
therefore not included in the unique LoC measures above.
For simple aggregation tree queries, only a few lines are
needed, specifying what is to be aggregated. Queries with
more complex topologies require more code. In our expe-
rience, the code size and complexity is comparable to that
of MapReduce programs. As with MapReduce, higher-

10

0 20 40 60 80 100 120 140
Elapsed time (minutes)

0

200

400

600

800

1000
La

te
nc

y
(s

ec
)

Maximum in period
95th percentile

Median

0 20 40 60 80 100 120 140
Experiment time (minutes)

0

200

400

600

800

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Figure 7: (Top) Latencies, with percentiles computed
over each 8-second window. (Bottom) Data rate at re-
ceiver, showing extent and duration of traffic shaping.
Without degradation, latency grows without bound,
and takes a long time to recover from disruption.

level frameworks could further reduce the code size and
complexity. Most programming mistakes were caught by
the client-side type checker, reducing the difficulty and
time cost of development.

Only two user-defined functions (UDFs) are required
for these sample queries; one to convert URLs to domains
and a second to compute the success ratio in Query #4.
The parsing is performed with a generic configurable
operator for parsing field-separated strings. This suggests
that the cube API plus our existing operators are sufficient
to express a wide range of tasks.

We have preliminary evidence that JetStream’s pro-
gramming model can be learned by non-experts and does
not require knowledge of the system internals. Query #3
was written by an undergraduate who did not participate
in JetStream’s development, and received only limited
assistance from the core development team.

7.2 System Throughput and Latency
We benchmark the system’s overall throughput and la-
tency characteristics using a relatively simple processing
pipeline under several different network configurations.
This experiment used 80 source nodes running on the
VICCI infrastructure, divided between MPI-SWS (Ger-
many), Georgia Tech and the University of Washington

0 10 20 30 40 50 60 70 80 90
Elapsed time (minutes)

0

5

10

15

20

25

30

35

La
te

nc
y

(s
ec

)

Maximum in period
95th percentile

Median

0 10 20 30 40 50 60 70 80 90
Experiment time (minutes)

0

100

200

300

400

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Figure 8: The same as Figure 7, but with degrada-
tion enabled. The system rapidly adjusts to available
bandwidth, keeping latency low and bounded.

(United States). The source nodes send image data to a
single union node at Princeton. All images are the same
size (approximately 26 kilobytes). Nodes are configured
to send a maximum of 25 images per second, a rate that
the network can support without degradation. This is a
400 mb/sec data rate, so we are using nearly half our in-
stitution’s gigabit WAN link during the experiment. The
configured degradation policy is to reduce the frame rate
if bandwidth is insufficient.

Figure 7 shows the behavior of the system with degrada-
tion disabled. Generally, latency is low: However, around
minute 15, a slight drop in available bandwidth resulted
in some nodes experiencing uncontrolled queue growth,
leading to significant latency. (This is visible as a small
bump in the latency plot.) At minute 35, we impose a
400 kbit/sec bandwidth cap on each source node using
the Linux kernel’s traffic shaping options. The latency
of all the nodes starts rising sharply and continuously.
Around minute 60, we disable bandwidth shaping and
latency starts to drop. Notice that the 95th percentile and
maximum latency recovers much more slowly than me-
dian latency. Some nodes are able to drain their queues
quickly, while other nodes are starving for bandwidth. As
a result, it takes roughly 45 minutes for the system to
resume its previous behavior.

Figure 8 shows that our degradation mechanisms pre-
vent these unwanted behaviors. We repeated a similar

11

experiment, but with degradation enabled. Here, after we
apply bandwidth shaping, the degradation mechanisms
activate, and successfully keep queue size and latency
bounded at a few seconds. Approximately 40 minutes
into the experiment, we apply more bandwidth shaping,
to 250 kb/sec per node, and again latency stays bounded.
Notice the absence of a latency spike at each of the band-
width transitions; the system reacts promptly enough that
such spikes are not even visible on the graph. At the 60
minute mark we disable traffic shaping, and the system
again reacts promptly, returning to its original state.

7.3 Complex Degradation Policies
In our final experiment, we demonstrate that JetStream’s
degradation mechanisms, operating on a realistic work-
load, maintain responsiveness in situations in which full-
fidelity data would exceed available resources. For this
experiment, use the Requests-by-Url query from Table 2,
executing under the same setup as in §7.1. We compress
a full day’s logs (and thus the diurnal variation) into five
minutes of wall-clock time. We impose a bandwidth cap
of 80 kb/second per source node, which is artificially low,
but serves to emphasize system behavior. The limit is low
enough to force the configured degradation policies to
activate as data rates shift.

We compare the effect of four degradation policies.
Each policy starts by sending data every second, if possi-
ble, and performing roll-ups to five-second windows when
bandwidth is scarce. One policy (max window 5) does
no further degradation. The max window 10 policy will
further degrade to 10-second windows. The remaining
two policies employ either consistent-sampling (based on
a hash of the URL) or a local value threshold (dropping
tuples with the lowest counts).

Figure 9 shows the bandwidth and degradation from
each of the four policies and the bandwidth used by the
null policy (no degradation). As the load increases, most
of the source nodes hit the bandwidth cap and switch to
5-second windows. As the load keeps rising, the more
heavily-used nodes again reach their cap. Both the thresh-
olding and sampling policies can keep bandwidth usage
under the cap.

We noted earlier that many CoralCDN URLs are
unique, and therefore do not aggregate well. This is visi-
ble in the results here. Time coarsening by a factor of 5
and 10 reduces bandwidth, but by factors much less than
5 or 10. Much bandwidth is used reporting statistics about
low-traffic URLs—the tail of the distribution. Local value
thresholding effectively truncates this tail. As can be seen
on the graph, this has a minuscule effect on the relative
error, while reducing bandwidth by a factor of two. (In
this context, relative error is the maximum error in the
request count for any one URL as a fraction of the total
number of requests in that time period).

0 50 100 150 200 250 300 350

Experiment time (sec)

0

2

4

6

8

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

No degradation
Max window 5
Max window 10

Max window 5 + Threshold
Max window 5 + Sampling

0 50 100 150 200 250 300 350

Experiment time (sec)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

%
 R

el
at

iv
e

er
ro

r

0

2

4

6

8

10

W
in

do
w

 s
iz

e
(s

ec
s)

Window size (max 10)
Window size (max 5)

Rel. error (threshholding)

Figure 9: (Top) Output bandwidth for five differ-
ent degradation choices. (Bottom) Window size and
thresholding error over time. For this query, window
sizes larger than 5 seconds have limited benefit, while
thresholding has minimal accuracy penalty. Degrada-
tion policies should depend on the data.

This experiment shows that JetStream is able to ef-
fectively combine different degradation techniques. The
limits of time coarsening on this workload illustrates why
compound policies are useful. The fact that different
degradations activate at the same point in the experiment
shows that the control loop works effectively with a vari-
ety of degradation operators.

8 Related Work
Our work has a large debt to the stream processing com-
munity. The original work on streaming [2, 6, 8] ad-
dressed the question of how to process incoming updates
with minimal latency. In contrast, JetStream targets dis-
persed and changing (stored) data sets, in the presence of
dynamic bandwidth constraints.

Spark-Streaming, MillWheel, and Storm [5, 29, 32] are
systems for large-scale stream processing within datacen-
ters. All these systems rely on an underlying fault-tolerant
storage system, respectively HDFS, BigTable, or a reli-
able message queue. Such systems or their implementa-
tion techniques, such as Spark’s memory-backed resilient
storage, could help scale JetStream within datacenters,

12

but are orthogonal to our concerns of efficiency and low
latency across the wide area.

Some research on streaming systems has considered
the wide area [19, 27]. One focus of this work was on
using redundant paths for performance and fault tolerance.
In contrast, we use degradation to cope with insufficient
bandwidth. Hourglass [27] places query operators to min-
imize network usage in an ad-hoc topology, but since it
does not include storage, users must choose which data to
collect (and thus the set of supported queries) beforehand.

Previous wide-area streaming work assumed that com-
putation resources were scattered in an ad-hoc manner,
e.g., on PlanetLab nodes. As a result, sophisticated al-
gorithms were needed for placement. This assumption
is overly pessimistic in our context. Due to the rise of
centralized datacenters, we expect there to be only two
or three options for operator or cube placement: the site
where the data is generated, the nearest point-of-presence,
or else a centralized datacenter.

Some single-node stream-processing systems, such as
TelegraphCQ [8], included relational storage, and others
have advocated tighter integration between stream pro-
cessing and relational databases [12]. The StreamCube
system evaluated which layers of a cube hierarchy to ma-
terialize in the context of stream processing [17]. These
uses of storage do not pose the latency-completeness
tradeoffs we address with our subscriber interface, nor do
they facilitate bandwidth reduction in distributed contexts.

Tree aggregation has been studied in the sensor net-
work community as a method of reducing bandwidth and
power consumption, notably in the Tiny Aggregation Ser-
vice [22]. Much subsequent sensor network research used
mesh topologies to compensate for unreliable connec-
tions and faulty nodes. In contrast, our hardware is not
power-constrained and we assume that conventional IP
networking will deliver suitable routes. Protocols such as
RCRT [25], the Rate-Controlled Reliable Transport Pro-
tocol for sensor networks, estimate available bandwidth
explicitly and convey rate allocation decisions to data
sources. They could serve as an alternative implementa-
tion of the congestion monitor in JetStream. However,
these works do not address how the application reacts to
the congestion signals, which in JetStream is specified
by the degradation operators, the policy manager, and the
interface between them.

Tree aggregation and local storage are also used in
the Ganglia [14] monitoring system. Ganglia supports
a limited set of queries and is oblivious to bandwidth
conditions.

Our work seeks to reduce data volumes while mini-
mizing the reduction in accuracy. Similarly, BlinkDB [4]
deploys sampling-based approximations on top of MapRe-
duce and Hive to reduce latency. In BlinkDB, the data is
carefully pre-sampled with specific statistical goals; small

probing jobs are used to estimate query run-time. In con-
trast, streaming wide-area analytics systems such as ours
have to measure and adapt to available bandwidth, with-
out the benefit of a prior data-import step. We also support
a range of degradation techniques, not just sampling.

Our previous workshop publication [28] argued for
decentralized wide-area analysis of the form conducted
by JetStream. It gave a high-level description of our ideas
and discussed use cases at length, but lacked this paper’s
detailed design, implementation, or evaluation.

9 Conclusions
This paper has presented a system, JetStream, for wide-
area data analysis in environments where bandwidth is
scarce. Our storage abstraction allows data to be stored
where it was generated and efficiently queried when
needed. It simplifies aggregation of data both across time
and across sources. Degradation techniques supplement
aggregation when available bandwidth is insufficient for
error-free results.

No single degradation technique is always best; a com-
bination of techniques can perform better than any indi-
vidual technique. Thus, our system supports combining
multiple techniques in a modular and reusable way using
policies. Our separation between congestion monitors,
degradation operators, and policies creates a powerful,
extensible framework for streaming wide-area analysis.

Acknowledgments
The authors appreciate the helpful advice and comments
of Jinyang Li, Jennifer Rexford, Erik Nordström, Rob
Kiefer, our shepherd Ramesh Govindan, and the anony-
mous reviewers. This work was funded under NSF awards
IIS-1250990 (BIGDATA) and CNS-1217782, as well as
the DARPA CSSG program.

References
[1] 3GPP Technical Specification 26.234. Transparent

end-to-end packet switched streaming service (PSS);
Protocols and codecs, 2013.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska,
U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. B. Zdonik. The design
of the Borealis stream processing engine. In CIDR,
2005.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,
Z. Wei, and K. Yi. Mergeable summaries. In PODS,
2012.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. BlinkDB: Queries with
Bounded Errors and Bounded Response Times on
Very Large Data. In EuroSys, 2013.

13

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nord-
strom, and S. Whittle. Millwheel: Fault-tolerant
stream processing at internet scale. In VLDB, 2013.

[6] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, Y. Park, and C. Venkatramani. SPC: A
distributed, scalable platform for data mining. In
DM-SSP, 2006.

[7] P. Cao. Efficient top-k query calculation in dis-
tributed networks. In PODC, 2004.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande,
M. Franklin, J. Hellerstein, W. Hong, S. Krishna-
murthy, S. Madden, F. Reiss, and M. Shah. Tele-
graphCQ: Continuous dataflow processing. In SIG-
MOD, 2003.

[9] Y. M. Chen, L. Dong, and J.-S. Oh. Real-time video
relay for uav traffic surveillance systems through
available communication networks. In IEEE WCNC,
2007.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. In PODS, 2001.

[12] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous an-
alytics: Rethinking query processing in a network-
effect world. In CIDR, 2009.

[13] M. J. Freedman. Experiences with CoralCDN: A
five-year operational view. In NSDI, 2010.

[14] Ganglia monitoring system. http://ganglia.
sourceforge.net/, 2013.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-
hesh. Data cube: A relational aggregation opera-
tor generalizing group-by, cross-tab, and sub-totals.
Data Mining and Knowledge Discovery, 1(1), 1997.

[16] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang. The
stretched exponential distribution of internet media
access patterns. In PODC, 2008.

[17] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah,
J. Wang, and Y. D. Cai. Stream cube: An architec-
ture for multi-dimensional analysis of data streams.
Distributed and Parallel Databases, 18(2), 2005.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[19] J.-H. Hwang, U. Cetintemel, and S. B. Zdonik. Fast
and reliable stream processing over wide area net-
works. In Data Eng. Workshop, 2007.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from se-
quential building blocks. ACM SIGOPS Operating
Systems Review, 41(3), 2007.

[21] D. Katabi, M. Handley, and C. E. Rohrs. Congestion
control for high bandwidth-delay product networks.
In SIGCOMM, 2002.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation service for
ad-hoc sensor networks. In OSDI, 2002.

[23] F. McSherry, D. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In CIDR, 2013.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, 2008.

[25] J. Paek and R. Govindan. RCRT : Rate-Controlled
Reliable Transport Protocol for Wireless Sensor Net-
works. ACM Trans. Sensor Networks (TOSN), 7(3),
2010.

[26] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton Univ., Dept.
Comp. Sci., 2011.

[27] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopou-
los, M. Welsh, and M. Seltzer. Network-aware op-
erator placement for stream-processing systems. In
ICDE, 2006.

[28] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. J. Freed-
man. Making every bit count in wide-area analytics.
In HotOS, May 2013.

[29] Storm. https://github.com/
nathanmarz/storm/, 2012.

[30] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. IEEE Trans. Knowledge and Data Eng., 15
(3):555–568, 2003.

[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI,
2008.

[32] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters. In
HotCloud, 2012.

14

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
https://github.com/nathanmarz/storm/
https://github.com/nathanmarz/storm/

	Introduction
	Design Overview
	Integrating structured storage
	Reducing data volumes
	Programming model

	Aggregation
	Data Cubes and Their API
	Integrating Cubes with Streaming
	Aggregation is Sometimes Insufficient

	Adaptive Degradation
	Degrading data with operators
	Monitoring available bandwidth
	Congestion response policies

	Degrading Quantitative Data
	Which degradations to use?
	Merging heterogeneous data

	Architecture and Implementation
	Evaluation
	Expressivity and Efficiency
	System Throughput and Latency
	Complex Degradation Policies

	Related Work
	Conclusions

