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Abstract

The theory community has proposed several new heap
variants in the recent past which have remained largely
untested experimentally. We take the field back to the
drawing board, with straightforward implementations of
both classic and novel structures using only standard,
well-known optimizations. We study the behavior of
each structure on a variety of inputs, including artificial
workloads, workloads generated by running algorithms
on real map data, and workloads from a discrete event
simulator used in recent systems networking research.
We provide observations about which characteristics
are most correlated to performance. For example,
we find that the L1 cache miss rate appears to be
strongly correlated with wallclock time. We also provide
observations about how the input sequence affects the
relative performance of the different heap variants. For
example, we show (both theoretically and in practice)
that certain random insertion-deletion sequences are
degenerate and can lead to misleading results. Overall,
our findings suggest that while the conventional wisdom
holds in some cases, it is sorely mistaken in others.

1 Introduction

The priority queue is a widely used abstract data struc-
ture. Many theoretical variants and implementations
support a varied set of operations with differing guar-
antees. We restrict our attention to the following base
set of commonly used operations:

• Insert (Q, x, k) — insert item x with key k into heap
Q and return a handle x̄

• DeleteMin (Q) — remove the item of minimum key
from heap Q and return its corresponding key k

• DecreaseKey (Q, x̄, k′) — given a handle x̄, change
the key of item x belonging to heap Q to be k′, where
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k′ is guaranteed to be less than the original key k

It has long been known that either Insert or
DeleteMin must take Ω (log n) time due to the clas-
sic lower bound for sorting [23], but that the other op-
erations can be done in O (1) time. In practice, the
worst-case of log n is often not encountered or can be
treated as a constant, and for this reason simpler struc-
tures with logarithmic bounds have traditionally been
favored over more complicated, constant-time alterna-
tives. In light of recent developments in the theory
community [2, 5, 11, 12, 19] and the outdated nature
of the most widely cited experimental studies on pri-
ority queues [24, 26, 30], we aim to revisit this area
and reevaluate the state of the art. More recent stud-
ies [3, 11, 13] have been narrow in focus with respect
to the implementations considered (e.g., comparing a
single new heap to a few classical ones), the workloads
tested (e.g., using a few synthetic tests), and the metrics
collected (e.g., measuring wallclock time and element
comparisons). In addition to the normal metric of wall-
clock time, we have collected additional metrics such as
branching and caching statistics. Our goal is to identify
experimentally verified trends which can provide guid-
ance to future experimentalists and theorists alike. We
stress that this is not the final word on the subject, but
merely another line in the continuing dialogue.

In implementing the various heap structures, we
take a different approach from the existing algorithm
engineering literature, in that we do not perform any
algorithm engineering. That is, our implementations
are intentionally straightforward from their respective
descriptions in the original papers. The lack of consid-
erable tweaking and algorithm engineering in this study
is, we believe, an example of näıveté as a virtue. We
expect that this would accurately reflect the strategy of
a practitioner seeking to make initial comparisons be-
tween different heap variants. As a sanity check, we
also compare our implementations with a state-of-the-
art, well-engineered implementation often cited in the
literature.

Our high-level findings can be summarized as fol-
lows. We find that wallclock time is highly correlated



with the cache miss rate, especially in the L1 cache.
High-level theoretical design decisions—such as whether
to use an array-based structure or a pointer-based one—
have a significant impact on caching, and which deci-
sions fare best is dependent on the specific workload.
For example, Fibonacci heaps sometimes outperform
implicit d-ary heaps, in contradiction to conventional
wisdom. Even a well-engineered implementation like
Sanders’ sequence heap [29] can be bested by our un-
tuned implementations if the workload favors a different
method.

Beyond caching behavior, those heaps with the
simplest implementations tend to perform very well.
It is not always the case that a theoretically superior
or simpler structure lends itself to simpler code in
practice. Pairing heaps dominate Fibonacci heaps
across the board, but interestingly, recent theoretical
simplifications to Fibonacci heaps tend to do worse than
the original structure.

Furthermore we found that a widely-used bench-
marking workload is degenerate in a certain sense. As
the sequence of operations progresses, the distribution
of keys in the heap becomes very skewed towards large
keys, contradicting the premise that the heap contains
a uniform distribution of keys. This can be shown both
theoretically and in practice.

Our complete results are detailed in Sections 4
and 5. We first describe the heap variants we imple-
mented in Section 2, and then discuss our experimen-
tal methodology and the various workloads we tested in
Section 3. We conclude in Section 6 with some remarks.

2 Heap Variants

Aiming to be broad, but not necessarily comprehensive,
this study includes both traditional heap variants and
new variants which have not previously undergone much
experimental scrutiny. We have implemented the fol-
lowing structures, listed here in order of program length:
implicit d-ary heaps, pairing heaps, Fibonacci heaps, bi-
nomial queues, explicit d-ary heaps, rank-pairing heaps,
quake heaps, violation heaps, rank-relaxed weak queues,
and strict Fibonacci heaps. Table 1 lists the logical lines
of code; in our experience, this order corresponded ex-
actly to perceived programming difficulty. There are
several other heap variants which may be worth in-
vestigating, but which have not been included in this
study. Among those not included are the 2-3 heap [31],
thin/thick heaps [22], and the buffer heap [6].

Williams’ binary heap [33] is the textbook example
of a priority queue. Lauded for its simplicity and taught
in undergraduate computer science courses across the
world, it is likely the most widely used variant today.
Storing a complete binary tree whose nodes obey the

Table 1: Programming effort

Heap variant Logical lines of code (lloc)
implicit simple 184
pairing 186
implicit 194
Fibonacci 282
binomial 317
explicit 319
rank-pairing 376
quake 383
violation 481
rank-relaxed weak 638
strict Fibonacci 1009

heap order gives a very rigid structure; indeed, the
heap supports all operations in worst-case Θ (log n)
time. The tree can be stored explicitly using heap-
allocated nodes and pointers, or it can be encoded
implicitly as a level-order traversal in an array. We
refer to these variations as explicit and implicit heaps
respectively. The implicit heap carries a small caveat,
such that in order to support DecreaseKey efficiently,
we must rely on a level of indirection: encoding the
tree’s structure as an array of node pointers and storing
the current index of a node’s pointer in the node itself
(allowing us to return the node pointer to the client
as x̄). This study includes two versions of implicit
heaps—one that supports DecreaseKey through this
indirection, and one that doesn’t. We refer to the latter
as the implicit-simple heap.

Explicit and implicit heaps can be generalized be-
yond the binary case to have any fixed branching factor
d. We refer to these heaps collectively as d-ary heaps;
this study examines the cases where d = 2, 4, 8, 16. To
distinguish between versions with different branching
factors, we label the heaps in this fashion: implicit-2,
explicit-4, implicit-simple-16, and so forth.

Beyond the d-ary heaps, all other heap variants are
primarily pointer-based structures, though some make
use of small auxiliary arrays. All are conceptual suc-
cessors to Vuillemin’s binomial queue [32]. Originally
developed to support efficient melding (which takes lin-
ear time in d-ary heaps), we have included it in our
study due to its simplicity. The binomial queue stores a
forest of perfect, heap-ordered binomial trees of unique
rank. This uniqueness is maintained by linking trees of
equal rank such that the root with lesser key becomes
the new parent. To support deletion of a node, each of
its children is made into a new root, and the resulting
forest is then processed to restore the unique-rank in-
variant. This can lead to a fair amount of structural



rearrangement, but the code to do so is rather simple.
Key decreases are handled as in d-ary heaps by sifting
upwards. Like d-ary heaps, binomial queues support all
operations in worst-case Θ (log n) time.

Most other heap variants can be viewed as some sort
of relaxation of the binomial queue, with the chrono-
logically first one being the Fibonacci heap [17]. The
Fibonacci heap achieves amortized O (1)-time Insert
and DecreaseKey by only linking after deletions and
allowing some imperfections in the binomial trees. The
imperfections are generated by key decreases: instead
of sifting, a node is cut from its parent as soon as
it loses a second child, and then made into a new
root. This can lead to a series of upwardly cascad-
ing cuts. The violation heap [12] and rank-pairing
heaps [19] can be viewed as further relaxations of the
Fibonacci heap. The rank-pairing heaps allow rank
differences greater than one, and propagate ranks in-
stead of cascading cuts so that at most one cut is made
per DecreaseKey. Two rank rules were proposed by
the authors, leading to our implementations being la-
beled rank-pairing-t1 and rank-pairing-t2. The viola-
tion heap also propagates ranks instead, only consider-
ing rank differences in the two most significant children
of a node. It allows two trees of each rank and uti-
lizes a three-way linking method. The pairing heap [16]
is essentially a self-adjusting, single-tree version of the
Fibonacci heap, where ranks are not stored explicitly,
and linking is done eagerly. Its amortized complexity is
still an open question, though it has been shown that
DecreaseKey requires Ω (log log n) time if all other
operations are O (log n) [15]. Two different amortiza-
tion arguments can be used to prove either O (1) and
O (log n) bounds for Insert and DecreaseKey respec-

tively [20] or O
(

22
√
log logn

)
for both operations [27]. It

remains an open question to prove an o (log n) bound for
DecreaseKey simultaneously with O (1)-time Insert.
All three relaxations are intended to be in some way
simpler than Fibonacci heaps, with the hope that this
makes them faster in practice.

The strict Fibonacci heap [2] on the other hand, in-
tends to match the Fibonacci time bounds in the worst
case, rather than in an amortized sense. This leads to
a fair amount of extra code to manage structural im-
perfections somewhat lazily. Rank-relaxed weak queues
[11] are essentially a tweaked version of rank-relaxed
heaps, with an emphasis on minimizing key compar-
isons. They mark nodes as potentially violating after
a DecreaseKey operation and clean them up lazily.
Quake heaps [5] are a departure from the Fibonacci
model, but are still vaguely reminiscent of binomial
queues. A forest of uniquely-ranked tournament trees is

maintained. Subtrees may be missing, but the number
of nodes at a given height decays exponentially in the
height, a property guaranteed through a set of global
counters and a global rebuilding process triggered after
deletions. There are multiple implementation strategies
mentioned in the original paper, but only the one that
was fully detailed (the full tournament representation)
has been implemented here. It is possible that the other
implementations would be more efficient.

3 Experimental Design and Workloads

Our codebase is written primarily in C99 and is available
online for inspection, modification, and further develop-
ment [1]. As we stated earlier, our implementations are
intentionally straightforward from their respective de-
scriptions in the original papers, or use only the most
basic, well-known optimizations for the more studied
structures. Further optimization is left to the compiler
(gcc -O4) so as not to unfairly bias toward one variant
or another.

Keys are 64-bit unsigned integers (uint64 t), while
the items themselves are 32-bit unsigned integers
(uint32 t). In most cases, the key actually consists
of a 32-bit key in the high-order bits and the item iden-
tifier in the low-order bits, in order to break ties during
comparisons.

We experimented with different memory allocation
schemes using our own simple fixed-size memory pool
implementation. This abstraction layer allowed us to
allocate all memory eagerly using a single malloc, allo-
cate lazily by doubling when space fills, or allocate com-
pletely on the fly using a malloc for each Insert. In
our experiments, the memory allocation scheme made
very little difference regardless of heap variant, indi-
cating that this layer of optimization was superfluous.
Thus, all the results in this paper use the eager strategy.

The workloads we tested are described in the sub-
sections below. These include workloads generated by
code sourced (with modifications) from DIMACS imple-
mentation challenges [9, 10], as well as workloads gener-
ated by a packet-level network simulator [7]. All exper-
iments use trace-based simulation. More specifically,
a workload is generated once using a reference heap
and the sequence of operations and values is recorded
in a trace file. This trace file can then be executed
against each of many drivers—one for each heap vari-
ant included in the study—as well as a dummy driver
that simply parses the trace file but does not execute
any heap operations. The dummy driver captures the
overhead of the simulation and its collected metrics are
subtracted from those of the other drivers before any
comparisons are done. Wallclock time is measured by
the driver itself. For purposes of timing, each execution
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of a trace file is run for a minimum of five iterations and
two seconds of wallclock time (whichever takes longer),
and the time is averaged over all iterations. Other met-
rics are collected over the course of a single iteration
using cachegrind [4], a cache and branch-prediction
profiler. The profiler simulates actual machine param-
eters and does not vary between executions, providing
accurate measurements that are isolated from other sys-
tem processes. We have used it to collect dynamic in-
struction and branching counts as well as reads, writes
and misses for both the L1 and L2 caches. Addition-
ally, cachegrind allows for simulating branch predic-
tion in a basic model (that does not correspond exactly
to the real machines); we have collected this mispredic-
tion count as well.

All experiments were run on a high-performance
computing cluster in Princeton consisting of Dell Pow-
erEdge SC1435 nodes with dual AMD Opteron 2212
processors (dual-core, 2.0GHz, 64KB L1 cache and 1MB
L2 cache per core) and 8GB of RAM (DDR2-667). The
machines ran Springdale/PUIAS Linux (a Red-Hat En-
terprise clone) with kernel version 2.6.32. All executions
remained in-core.

3.1 Artificial randomized workloads. The first
and least controversial workload we consider is sorting
sequences of n uniformly random integers. This trans-
lates to n random insertions followed by n deletions in
the trace files.

The next type of sequence intermixes insertions and
deletions, but in a very structured way which turns
out to be degenerate. It is a very natural sequence
to test, and due to its presence in the DIMACS test
set, we worry that its use in benchmarks may be more
widespread than one might hope of a broken test. The
sequence begins with n random insertions as in the
sorting case. It is then followed by cn repetitions of
the following: one random insertion followed by one
deletion. It is not hard to show that the evolving
distribution of keys remaining in the heap is far from
uniform.

Lemma 3.1. After the initial n insertions and cn iter-
ations of insert-delete, the items remaining in the heap
consist of the n largest keys inserted thus far. The next
item inserted has roughly a c/c+1 probability of becoming
the new minimum.

Proof. For the purpose of this analysis, we consider the
inserted keys to be reals distributed uniformly at ran-
dom in the range [0, 1], rather than 32-bit integers. The
pattern of operations leaves the n largest keys inserted
thus far in the heap, as the following simple inductive
argument shows. Initially, n keys are inserted; being the

only keys thus far, they are trivially the largest. Then,
each iteration consists of a single insertion followed by
a minimum deletion. Since there are n + 1 keys in the
heap after the insertion, and the minimum is deleted,
the remaining n keys are the largest thus far.

We can view the random variables of all keys in-
serted thus far to be the collection X1, . . . , X(c+1)n, and

the current minimum in the heap to be the (cn + 1)
th

order statistic, X(cn+1). The expectation of this variable

is well-known: E
[
X(cn+1)

]
= cn+1/(c+1)n ≈ c/c+1. From

this we deduce that the probability p of the next inserted
key becoming the new minimum is roughly c/c+1.

As c grows, the most recent insertion becomes
exceedingly likely to be the next deleted item. In other
words, the behavior of the queue becomes increasingly
stack-like as the sequence lengthens. On the other
hand, if we introduce DecreaseKey operations to the
sequence, we can ameliorate the degeneracy. This brings
us to our third type of artificial sequence. We again
build an initial heap of size n with random insertions.
We then perform cn repetitions of the following: one
random insertion, k key decreases on random nodes,
and one deletion. We also consider two cases for the
k key decreases. In the first, we decrease the key to
some random number between its current value and
the minimum. In the second, we decrease it so that it
becomes the new minimum. We refer to these options
as “middle” and “min”, respectively.

In both the insertion-deletion workloads and the
key-decrease workloads we consider c ∈ {1, 32, 1024},
while in the key-decrease workloads we also consider
k ∈ {1, 32, 1024}.

3.2 More realistic workloads. Of our remaining
workloads, some are still artificial in the sense that they
are generated by running real algorithms on artificial
inputs, but others make use of real inputs.

The first two of these are Dijkstra’s algorithm
for single source shortest paths and the Nagamochi-
Ibaraki algorithm for the min-cut problem. We run
both algorithms against well-structured or randomly
generated graphs. Dijkstra’s algorithm in particular is
run on several classes of graphs, including some which
guarantee a DecreaseKey operation for each edge.
Additionally, we run Dijkstra’s algorithm on real road
networks of different portions of the United States.

Our final set of trace files is generated from the
htsim packet-level network simulator [7], written by
the authors of the multipath TCP (MPTCP) protocol.
The simulator models arbitrary networks using pipes
(that add delays) and queues (with fixed processing
capacity and finite buffers), and implements both TCP



and MPTCP. One of these workloads is based on real
traffic traces from the VL2 network [18].

4 Results

The results reveal a more nuanced truth than that which
has been traditionally accepted. It is not true that
implicit-4 heaps are optimal for all workloads, nor is
it true that Fibonacci heaps are always exceptionally
slow. We focus on the most interesting cases here,
and include the remaining results in the full version
of our paper [25]. We present most of our data in
tables sorted in ascending order of wallclock time. Each
table is for a single, large input file. The tables
represent raw metrics divided by the minimum value
attained by any heap, such that a highlighted value
of 1.00 is the minimum, while a value c is c times
the minimum. These ratios make it easier to interpret
relative performance instead of the full counts. In order
to keep the tables compact, the column titles have
been abbreviated: time is wallclock time, inst is the
dynamic instruction count, l1 rd and l1 wr are the
number of L1 reads and writes respectively, l2 rd and
l2 wr are the L2 reads and writes respectively, br is the
number of dynamic branches, and l1 m, l2 m and br m

are the number of L1 misses, L2 misses, and branch
mispredictions.

We initially ran each experiment on many problem
sizes. We found that in most cases the relative perfor-
mance stabilized very quickly, so from here on we only
present data for the largest problem size. See Figures 1
and 2 for some evidence of this stabilization. The heaps
are separated into two classes so as to unclutter the
plots and give a consistent axis. The operation counts
are the sum of the counts of Insert, DecreaseKey,
and DeleteMin operations. In Figure 1, all operation
counts are scaled by log n, where n is the average size
of the heap. In Figure 2, only the DeleteMin count is
scaled by log n. This scaling approximately reflects the
amortized bounds for each heap.

Before diving into the results, we first make a high-
level observation. The number of L1 cache misses
appears to be the metric most strongly correlated with
wallclock time. It is not a perfect predictor, and
inversions in ordering certainly exist. Some of these
inversions can be explained by L2 cache misses, write
counts, or branch misprediction. Others appear to be
outliers or are otherwise yet unexplained.

4.1 Conventional wisdom holds. We first examine
two cases where the conventional wisdom holds. As
seen in Table 2, the implicit-simple heaps handle sorting
workloads very well. The best performance is achieved
by the implicit-simple-4 heap. The Fibonacci heap is

almost seven times as slow as the fastest, which does
indeed echo old complaints about its speed. The pairing
heap and binomial queue fair better here, but still
poorly at at least four times as slow as the fastest.
Without any key decreases, the rank-relaxed weak
queue is essentially just an alternate implementation of
a binomial queue, so it is not terribly surprising that it
does better than the Fibonacci heap.

Similarly with Dijkstra’s algorithm on the full USA
road map (Table 3), we see implicit-4 heaps performing
quite well, while Fibonacci heaps are roughly three
times as slow. The explicit heaps are noticeably slower
even than Fibonacci heaps, and the only Fibonacci
relaxation to perform well here is the pairing heap. The
others are in fact slower than their conceptual ancestor.
Although they exhibit similar caching behavior, their
code is somewhat more complicated, which may be
contributing to the slowdown.

Both of the above workloads are very well-studied,
and as such the relative performance of the older heap
variants should not be very surprising.

4.2 Degenerate results. We now turn to our ran-
domized insertion-deletion workload. The results here
are more surprising. Recall from Lemma 3.1 that this
workload is degenerate, in that as the sequence goes
on, the most recently inserted item is very likely to be
the next item deleted. Nevertheless, this sequence is
commonly used in empirical studies. The shortest se-
quence we tested, c = 1, remains rather close to the
sorting workload. On the other hand, when the se-
quence is very long (c = 1024), as shown in Table 4,
we see a very different picture. The queue-based struc-
tures outperform the implicit heaps by a factor of at
least two. Under these assumptions about the distribu-
tion, an Insert operation in a d-ary heap results in the
node being sifted all the way to the top, and the subse-
quent deletion on average results in another long sifting
sequence. In a queue structure with lazy insertion, the
Insert commonly results in a singleton node which is
simply removed afterwards with little to no restructur-
ing.

Although degenerate in the above case, a general-
ization of this sequence becomes a natural sequence for
which efficient structures have been designed. Consider
workloads which frequently insert new items near the
minimum rather than toward the bottom of the heap.
Let r(x) denote the rank of x among the items in the
heap, such that the rank of the minimum is 1 and the
maximum is n. Similarly let m(x) be the maximum
value of r(x) over the lifetime of x in the heap. Then
there are structures which are optimized for both the
case of frequently deleting small-rank items and the
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Figure 1: Dijkstra on the full USA road map. All operation counts are scaled by log n.
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Table 2: Sorting
Heap Size – max = 4194304, average = 2097152
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 1.00 : 1.00 : 0.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
implicit simple 4 1.00 1.00 1.00 1.33 1.00 1.01 1.00 1.00 1.00 1.00
implicit simple 8 1.05 1.23 1.09 1.11 1.01 1.00 1.12 1.01 1.01 1.12

implicit simple 16 1.25 1.78 1.39 1.00 1.28 1.00 1.53 1.19 1.27 1.53
implicit simple 2 1.59 1.12 1.23 1.98 1.01 1.04 1.29 1.31 1.01 1.29

implicit 8 3.30 1.16 2.17 1.79 3.94 2.05 1.61 1.90 3.90 1.61
implicit 4 3.66 1.04 1.88 2.01 3.26 2.04 1.65 1.76 3.23 1.65

implicit 16 3.91 1.54 2.84 1.68 5.58 2.09 1.94 2.33 5.50 1.94
pairing 4.29 1.06 2.08 6.78 2.35 38.14 2.04 3.05 3.13 2.04

binomial 4.63 1.73 4.22 9.45 1.51 44.62 2.58 5.15 2.44 2.58
implicit 2 4.75 1.25 1.98 2.66 3.82 2.07 2.41 1.99 3.78 2.41
explicit 4 5.10 3.11 6.52 10.60 2.06 117.30 7.07 6.99 4.56 7.07

rank relaxed weak 5.14 2.46 6.06 9.86 2.43 10.69 4.85 6.50 2.61 4.85
explicit 2 5.69 4.13 8.43 13.60 1.51 113.31 8.87 9.01 3.93 8.87
fibonacci 6.81 2.37 4.80 13.53 1.54 101.32 5.09 6.53 3.70 5.09
explicit 8 7.93 3.38 7.48 12.49 3.71 162.24 8.22 8.10 7.14 8.22

rank pairing t2 8.35 2.39 5.21 7.37 1.96 47.12 5.70 5.32 2.94 5.70
rank pairing t1 8.40 2.39 5.21 7.37 1.96 47.12 5.70 5.32 2.94 5.70

violation 10.13 3.39 6.23 10.29 3.45 6.46 7.52 6.71 3.51 7.52
explicit 16 12.62 4.41 10.17 16.95 5.90 250.87 11.49 11.00 11.21 11.49

quake 13.76 6.84 16.98 31.33 3.10 123.25 10.40 19.10 5.71 10.40
strict fibonacci 14.91 11.60 31.49 62.56 4.33 52.71 19.47 36.49 5.38 19.47

Table 3: Dijkstra – full USA road map
Heap Size – max = 4200, average = 2489
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 13.98 : 13.98 : 1.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
implicit 4 1.00 1.00 1.00 1.10 1.35 1.06 1.00 1.00 1.00 1.00
implicit 8 1.07 1.12 1.12 1.03 1.61 1.18 1.01 1.07 1.20 1.01
implicit 2 1.17 1.10 1.01 1.27 1.35 1.00 1.33 1.05 1.00 1.33

implicit 16 1.37 1.42 1.38 1.00 2.20 1.35 1.21 1.24 1.63 1.21
pairing 1.68 1.09 1.12 2.95 1.71 28.57 1.39 1.60 1.75 1.39

binomial 2.37 1.49 1.83 3.49 1.30 34.57 1.49 2.24 1.56 1.49
fibonacci 3.15 2.00 2.09 5.03 1.73 79.53 2.91 2.85 2.67 2.91

rank pairing t2 3.26 1.98 2.16 2.85 1.34 35.46 3.19 2.29 1.61 3.19
rank relaxed weak 3.27 2.21 2.72 3.62 2.34 10.01 3.08 2.90 1.89 3.08

rank pairing t1 3.29 1.98 2.16 2.85 1.33 35.35 3.19 2.29 1.60 3.19
explicit 4 3.39 2.69 2.83 4.11 1.97 104.57 4.22 3.11 3.29 4.22
explicit 2 3.84 3.35 3.39 4.84 1.00 74.61 5.01 3.71 2.05 5.01
explicit 8 4.20 3.01 3.32 5.00 4.50 168.91 5.04 3.70 6.28 5.04
violation 4.74 2.85 2.67 3.92 2.60 4.24 4.38 2.95 1.97 4.38

explicit 16 5.94 3.94 4.56 6.81 8.02 276.59 7.13 5.06 10.76 7.13
quake 8.40 5.84 6.82 10.69 3.45 137.91 6.90 7.72 4.97 6.90

strict fibonacci 12.49 9.47 12.50 22.07 6.96 84.51 11.47 14.83 6.58 11.47
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Table 4: Randomized Insert–DeleteMin (Degenerate) – c = 1024
Heap Size – max = 131073, average = 131041
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 1.00 : 1.00 : 0.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
pairing 1.00 1.00 1.00 1.08 1.60 4.96 1.17 1.00 1.34 1.17

binomial 1.14 1.02 1.08 1.12 1.00 5.44 1.00 1.06 1.00 1.00
rank relaxed weak 1.48 1.43 1.50 1.49 1.62 1.09 1.91 1.45 1.07 1.91

fibonacci 1.72 1.86 1.41 1.50 1.01 11.85 4.09 1.40 1.46 4.09
rank pairing t2 2.06 2.25 1.58 1.30 1.08 5.55 5.52 1.43 1.06 5.52
rank pairing t1 2.07 2.25 1.58 1.30 1.08 5.55 5.52 1.43 1.06 5.52

implicit 8 4.90 4.68 3.03 1.66 86.87 93.72 9.64 2.42 60.22 9.64
implicit simple 8 5.25 4.77 1.65 1.11 119.49 173.98 6.09 1.40 86.00 6.09
implicit simple 4 6.12 4.30 1.70 1.42 119.46 347.11 6.09 1.54 98.18 6.09

implicit 4 6.64 4.61 2.82 1.97 132.53 264.11 11.15 2.42 100.40 11.15
implicit simple 16 6.76 7.11 2.11 1.00 40.98 1.00 8.46 1.62 25.37 8.46

implicit 16 6.78 6.26 4.03 1.55 108.93 96.37 11.50 2.97 74.02 11.50
quake 7.37 5.86 2.97 2.11 1.79 14.30 17.39 2.55 2.11 17.39

violation 7.88 5.52 3.91 3.17 2.56 1.76 16.97 3.51 1.70 16.97
strict fibonacci 9.76 2.47 2.46 2.88 47.26 9.78 4.48 2.54 29.86 4.48

implicit simple 2 11.04 5.32 2.34 2.26 139.20 866.81 8.62 2.23 146.96 8.62
implicit 2 11.87 6.07 3.29 2.81 159.38 785.54 17.73 3.01 153.69 17.73
explicit 4 17.50 18.16 13.38 12.77 5.11 37.38 59.93 12.73 5.79 59.93
explicit 8 20.14 19.69 14.98 14.51 14.47 95.52 68.80 14.33 15.66 68.80
explicit 2 23.58 23.13 16.78 16.13 4.13 30.65 70.99 16.01 4.71 70.99

explicit 16 44.51 27.29 21.42 20.86 55.83 403.73 100.53 20.54 62.89 100.53

case of frequently deleting large-rank items. The fishs-
pear data structure achieves an O (logm(x)) bound for
deletion while rank-sensitive priority queues achieve an
O (log (n/r(x))) bound [8, 14]. Additonally, pairing heaps
have been shown to support DeleteMin in O (log k)
time where k is the number of heap operations since
the minimum item was inserted [20].

The event simulation literature, largely orthogonal
to the theory literature, includes more sophisticated
random models for generating insertion-deletion work-
loads. One in particular to note is the so-called “classic
hold” model which is essentially the same as the de-
generate model, except that instead of inserting a com-
pletely random key in each iteration, the new key is
equal to the most recently deleted key plus a positive
random value. This avoids the degeneracy. This and
other models were explored in a previous experimental
study [28]. That study also considers several special-
case priority queues with poor theoretical bounds (e.g.,
ω(log n)) which nonetheless perform quite well for event
simulation workloads.

4.3 Surpising results. As noted in our discussion of
the workloads, adding even a single key decrease per it-
eration to the random sequences lessens the degeneracy.
Furthermore in Table 5 we see that if the key decreases

do not always generate a new minimum, as would be
the case in many applications such as graph search, then
implicit heaps with large branching factors continue to
perform well. When the key decreases always produce
new minima, the amortized structures come out ahead,
while worst-case structures (implicit heaps and binomial
queues included) fair poorly, as shown in Table 6. As
these sequences get longer, e.g. c = 1024 and k = 1 , the
Fibonacci relaxations gain ground, with rank-pairing-t1
heaps surpassing Fibonacci heaps. We note that the
change in performance coincides with a large gap in L2
cache misses, and is likely due to the long sifting process
in d-ary heaps.

If we increase the density of key decreases in the se-
quence, then we see something strange (Table 7). Sud-
denly the d-ary heaps are doing well, and in particular
the explicit heaps outperform the implicit ones. One
possible explanation for this is that the level of indi-
rection in the implicit heap implementations requires
them to not only touch the same allocated nodes that
the explicit heaps touch, but also to jump around in
the structural array while doing path traversals. Noting
that implicit and explicit heaps have a similar number
of L1 misses, this is one of the few other workloads for
which L2 behavior is a better performance predictor.

As to why the d-ary heaps outperform the amor-



Table 5: Randomized DecreaseKey – Middle, c = 1, k = 1
Heap Size – max = 8388609, average = 7340032
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 2.00 : 1.00 : 1.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
implicit 8 1.00 1.23 1.14 1.07 2.91 1.21 1.00 1.04 1.58 1.00
implicit 4 1.05 1.15 1.03 1.19 2.57 1.63 1.07 1.00 1.43 1.07
binomial 1.07 1.42 1.84 3.99 1.28 6.09 1.24 2.26 1.05 1.24

pairing 1.09 1.00 1.00 2.90 1.52 4.92 1.04 1.41 1.10 1.04
implicit 16 1.15 1.53 1.41 1.00 3.98 1.02 1.13 1.21 2.12 1.13

rank relaxed weak 1.38 2.06 2.57 3.74 1.68 2.28 2.39 2.69 1.02 2.39
implicit 2 1.47 1.41 1.12 1.55 3.05 2.91 1.61 1.15 1.77 1.61
fibonacci 1.58 1.98 2.02 5.23 1.00 11.07 2.39 2.70 1.23 2.39
explicit 4 1.86 3.82 3.77 5.89 1.40 13.92 5.10 4.05 1.63 5.10

rank pairing t2 1.98 2.04 2.16 2.98 1.29 5.18 2.74 2.22 1.00 2.74
rank pairing t1 1.98 2.04 2.16 2.98 1.29 5.18 2.74 2.22 1.00 2.74

explicit 2 2.22 5.00 4.80 7.44 1.09 12.73 6.32 5.14 1.39 6.32
explicit 8 2.29 4.08 4.24 6.80 2.48 19.90 5.83 4.60 2.57 5.83
violation 2.30 2.73 2.52 3.85 2.13 1.00 3.49 2.69 1.17 3.49

quake 2.96 5.19 6.07 10.51 1.88 12.47 4.70 6.78 1.78 4.70
strict fibonacci 3.28 8.40 11.05 20.87 2.76 6.29 8.08 12.79 1.83 8.08

explicit 16 3.94 5.20 5.59 8.85 4.00 31.73 7.98 6.03 4.12 7.98

Table 6: Randomized DecreaseKey – Min, c = 1, k = 1
Heap Size – max = 8388609, average = 7340032
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 2.00 : 1.00 : 1.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
pairing 1.00 1.00 1.00 1.00 1.00 1.65 1.00 1.00 1.00 1.00

fibonacci 3.04 2.62 2.21 2.58 3.00 3.52 4.91 2.37 2.43 4.91
rank relaxed weak 3.65 3.16 3.05 2.18 4.66 2.01 5.89 2.68 2.40 5.89

rank pairing t2 5.43 3.42 2.57 1.96 5.94 1.58 7.54 2.32 2.67 7.54
rank pairing t1 5.95 3.39 2.56 1.95 5.94 1.57 7.46 2.30 2.67 7.46

violation 6.32 4.54 3.32 2.40 5.93 1.04 10.47 2.93 2.46 10.47
quake 6.55 6.59 4.37 3.53 5.28 2.61 13.31 4.02 2.86 13.31

implicit 8 6.98 3.58 2.42 1.24 40.06 1.02 5.55 1.92 14.19 5.55
implicit 4 7.25 3.47 2.25 1.41 33.17 1.00 6.20 1.90 11.81 6.20

strict fibonacci 7.39 8.44 8.38 8.31 9.76 4.81 13.05 8.35 5.27 13.05
implicit 16 9.40 4.35 2.94 1.14 56.29 1.05 6.02 2.18 19.79 6.02
implicit 2 10.17 4.48 2.59 1.93 38.66 1.01 9.67 2.31 13.70 9.67
binomial 12.14 5.90 5.55 6.54 30.10 14.21 10.45 5.97 16.01 10.45
explicit 4 14.95 12.84 9.64 8.33 24.42 18.16 30.31 9.09 15.63 30.31
explicit 2 16.24 17.12 12.53 10.60 24.32 12.53 38.42 11.71 13.36 38.42
explicit 8 21.07 13.80 10.88 9.74 39.17 28.94 34.46 10.40 25.00 34.46

explicit 16 31.01 17.68 14.40 12.85 60.51 48.34 47.08 13.74 40.06 47.08
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Table 7: Randomized DecreaseKey – Min, c = 1, k = 1024
Heap Size – max = 262145, average = 262017
Ratio of Operations – Insert : DeleteMin : DecreaseKey = 2.00 : 1.00 : 1024.00

queue time inst l1 rd l1 wr l2 rd l2 wr br l1 m l2 m br m
explicit 4 1.00 1.07 1.04 1.07 1.23 5.92 1.17 1.05 1.18 1.17

explicit 16 1.07 1.11 1.08 1.11 1.50 6.22 1.30 1.09 1.36 1.30
implicit 16 1.16 1.01 1.01 1.00 2.16 5.71 1.01 1.00 1.71 1.01
implicit 2 1.22 1.01 1.00 1.01 2.09 5.71 1.03 1.00 1.67 1.03
binomial 1.23 1.44 1.89 1.31 1.79 5.83 2.46 1.71 1.50 2.46
explicit 8 1.26 1.07 1.05 1.08 1.47 6.03 1.20 1.06 1.32 1.20
explicit 2 1.27 1.10 1.06 1.09 1.00 5.88 1.24 1.07 1.03 1.24
implicit 8 1.28 1.00 1.00 1.00 2.17 5.71 1.00 1.00 1.71 1.00
implicit 4 1.31 1.00 1.00 1.00 2.15 5.71 1.00 1.00 1.70 1.00

pairing 1.39 3.58 2.36 5.77 3.57 14.48 7.18 3.41 3.20 7.18
strict fibonacci 1.41 1.43 1.61 2.22 1.56 1.00 1.58 1.80 1.00 1.58

violation 1.82 2.37 2.04 1.73 2.85 2.37 4.85 1.94 1.87 4.85
rank pairing t1 1.84 4.97 3.80 4.05 6.54 11.89 12.30 3.87 4.77 12.30
rank pairing t2 1.84 5.06 3.81 4.05 6.56 11.89 12.64 3.88 4.79 12.64

fibonacci 2.82 7.09 5.36 11.55 3.68 31.54 12.86 7.26 4.55 12.86
rank relaxed weak 2.99 11.32 8.93 11.76 4.04 14.28 25.57 9.79 3.47 25.57

quake 5.07 16.04 14.80 20.94 7.26 39.64 20.19 16.68 7.28 20.19

tized structures, consider the overall pattern. If many
nodes have their keys decreased in a pairing heap, for
instance, then their subtrees are simply reattached un-
derneath the root. Each node access is likely to trigger
a cache miss, as there will be little revisiting of nodes
other than the root, and the subsequent deletion will
have to examine each of these nodes again in order to
restructure the tree. On the other hand, in the d-ary
heaps, all the sifting is along ancestral paths which share
many nodes between operations, and hence the caching
effects are more favorable.

4.4 Other workloads. The full version of our paper
contains a complete set of data and further discussion
of results [25]. Among the other workloads we tested,
those that generate relatively small heap sizes favor the
implicit heaps, while those operating on larger heap
sizes favor amortized structures, especially the pair-
ing heap. Very dense key-decrease workloads, includ-
ing some “bad” inputs for Dijkstra’s algorithm and
the Nagamochi-Ibaraki workloads, favor implicit and ex-
plicit heaps. The network simulation workloads, which
produce relatively small heap sizes and have no key de-
creases, all favor implicit-simple heaps.

5 Sanity Checks

We performed a few auxiliary experiments to verify our
findings in the previous section.

Table 8: Tweaking node size to test caching effects.

implicit pairing
node size time rd wr time rd wr

1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 1.08 1.10 1.67 1.36 1.08 1.45
4.00 1.29 1.32 3.00 1.84 1.08 2.24

5.1 Testing the caching hypothesis. In order to
lend some credence to our claim that caching is the
primary predictor of performance in many of these
test cases, we ran a few additional tests, tweaking
the parameters of our implementations. We added an
extra padding field to the node in our pairing heap
and implicit-4 heap implementations. The extra field
does not generate additional instructions in the code
other than in the original memory allocation process
(not included in the timing procedures) and thus the
only change should be in the memory address allocated
to the nodes. This can affect both caching and branch
prediction. Through repeated doubling of node size, we
find that even though the dynamic instruction count
does not grow, the wall-clock time does—in fact, it
grows roughly in proportion to the cache miss rate. A
less-pronounced effect also accompanies the growth of
the misprediction rate.

One potentially interesting observation from these
experiments is this: the instruction patterns of pairing
heaps is write-first, while that of implicit heaps is read-



first. By this we mean that typically, whenever an
implicit heap touches a node, it does so first via a read,
while a pairing heap quite often simply overwrites data
in the node without reading it. This means that the
cache behavior for pairing heaps is skewed toward write
misses, while implicit heaps are skewed toward read
misses. Table 8 shows the read and write miss rates
for both heaps.

5.2 Comparison to an existing implementation.
We ran a few experiments against Sanders’ implemen-
tation of the sequence heap [29], which has a reputation
of being hard to beat in practice. This gives us an easy
way to benchmark our own untuned implementations
to see how they compare against a well-engineered one.
The results were encouraging.

Of the four workloads we tested, the sequence heap
was faster than any of our implementations on two of
them, while it was slower on the other two. More
specifically, the sequence heap was 1.97 times faster
than the implicit-simple-4 heap on the sorting workload,
and a significant 3.69 times faster than the pairing heap
on the randomized insertion-deletion workload with c =
32. Our pairing heap implementation performed 1.36
times faster than the sequence heap on the insertion-
deletion workload with c = 1024, and the implicit-
simple-2 heap was 1.15 times faster on one of the
network simulator workloads.

6 Remarks

As declared in the introduction, this is by no means a
final study. The push in the past decade for better-
performing Fibonacci-like heaps, while it may have led
to theoretical simplifications, does not seem to have
yielded obvious practical benefits. The results show
that the optimal choice of implementation is strongly
input-dependent. Furthermore, it shows that care must
be taken to optimize for cache performance, primarily
at the L1-L2 barrier. This suggests that complicated,
cache-oblivious structures are unlikely to perform well
compared to simpler, cache-aware structures. Some
obvious candidates for renewed testing are sequence
heaps and B-heaps [21]. Another obvious direction for
future work is to explore other classes of workloads.

We hope that our study gives future theorists and
practitioners a new outlook on the state of affairs.
Unfortunately, there is no simple answer to which heap
should be used when. Picking the best tool for the
job will likely require experimentation between existing
implementations or careful analysis of the expected
workload’s caching behavior against each heap. To this
end, we hope that our simple implementations of various
heap structures will serve as a useful resource.
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