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Abstract
Large enterprises can save significant energy and

money by putting idle desktop machines to sleep. Many
systems that let desktops sleep and wake them on de-
mand have been proposed, but enterprise IT departments
refuse to deploy them because they require special hard-
ware, disruptive virtualization technology, or dedicated
per-subnet proxies, none of which are cost-effective. In
response, we devised GreenUp, a minimal software-only
system that allows any machine to act as a proxy for
other sleeping machines in its subnet. To achieve this,
GreenUp uses novel distributed techniques that spread
load through randomization, efficiently synchronize state
within a subnet, and maintain a minimum number of
proxies despite the potential for correlated sleep times.
In this paper, we present the details of GreenUp’s design
as well as a theoretical analysis demonstrating its correct-
ness and efficiency, using empirically-derived models
where appropriate. We also present results and lessons
from a seven-month live deployment on over 100 ma-
chines; a larger deployment on ~1,100 machines is cur-
rently ongoing.

1 Introduction
A number of recent studies [2, 4, 18, 32] show that

desktop computers in enterprise environments collec-
tively waste a lot of energy by remaining on even when
idle. By putting these machines to sleep, large enter-
prises stand to save millions of dollars [31].

The reasons machines stay awake when idle are well
known [2, 23]. Most OSes put a desktop machine to sleep
after some amount of user idle time, but users and IT
administrators override this to enable remote access “at
will.” In enterprise environments, users typically access
files or other resources from their machines, while IT
administrators access machines for maintenance tasks.
This scenario is prevalent in Microsoft and other large
corporations [16]. Thus, any system for putting ma-
chines to sleep must maintain their availability.

A number of solutions have been proposed to solve
this problem [2, 3, 8, 18]. However, many of the
proposed solutions are difficult to deploy. For ex-
ample, Somniloquy [2] requires specialized hardware,
Litegreen [8] requires a fully virtualized desktop, and
SleepServer [3] requires special application stubs.

The most promising approach, which requires no
hardware changes and only minimal software deploy-
ment, is the “sleep proxy” approach, first proposed by
Allman et al. [4] and further detailed by others [18, 23].
The key idea is that traffic meant for each sleeping ma-
chine is directed to a proxy. The proxy inspects the traf-
fic, answers some such as ARP requests on behalf of the
sleeping machine, and wakes the machine when it sees
important traffic such as a TCP SYN. The proxy discards
most of the traffic without any ill effects [18].

We previously deployed such an approach [23], but
when we tried to start large-scale trials of it, we ran into
major difficulties with our IT department that required us
to completely redesign our solution. Basically, they re-
fused to deploy and maintain a dedicated proxy on every
subnet, due to the costs involved. Moreover, such a proxy
constitutes a single point of failure, and would necessi-
tate additional backup proxies, further adding to the cost.
These opinions were also shared by the IT departments
of some of Microsoft’s large customers. We discuss this
more in §2.

These considerations led us to a decentralized design
for GreenUp, our system for providing availability to ma-
chines even as they sleep. The key idea behind GreenUp
is that any machine can act as a sleep proxy for one or
more sleeping machines on the same subnet. Whenever
a machine falls asleep, another one starts acting as a sleep
proxy for it. If the sleep proxy itself falls asleep, another
sleep proxy rapidly takes over its duties.

Like most distributed systems, GreenUp must han-
dle issues of coordination and availability among partici-
pants that operate independently. However, our problem
setting has several distinctions that led us to an atypical
design. First, machines are on the same subnet, so they
can efficiently broadcast to each other and wake each
other up. Second, GreenUp does not require a strongly-
consistent view of the system. Third, GreenUp runs on
end-user machines, making them sensitive to load and in-
herently unreliable. That is, their users will not tolerate
noticeable performance degradation, and they may go to
sleep at any time.

The techniques we have developed for this environ-
ment can be applied to any distributed system facing sim-
ilar types of machine behavior and consistency require-
ments. Distributed management uses randomization to
spread sleep proxy duties evenly over awake machines



without explicit coordination. Subnet state coordination
uses the subnet broadcast channel shared by all partici-
pants to efficiently disseminate state among them. Ad-
ditionally, we show how guardians can protect against
a new type of correlated failure we observe: correlated
sleep times among participants.

Our work makes the following contributions:
• We provide a complete design for a distributed sys-

tem that makes sleeping machines highly available,
including novel techniques for distributed manage-
ment, subnet state coordination, and mitigation of
correlated sleep with guardians (§4).

• We analytically justify our design techniques and
prove that they achieve the properties we require.
Where appropriate, we use models derived from
real sleep behavior (§5).

• We demonstrate the feasibility, usability, and effi-
ciency of our design by implementing it and deploy-
ing it on over 100 users’ machines (§6), and discuss
the many lessons we have learned from this deploy-
ment over the past seven months (§7).

After providing motivation in §2 and background use-
ful for understanding our design in §3, §4–§7 detail our
contributions. §8 discusses key issues and areas of ongo-
ing work, §9 presents related work, and §10 concludes.

2 Motivation
In our earlier work [23], we discussed the engineer-

ing issues involved in deploying a sleep proxy solution.
However, when we wanted to start large-scale trials of
our system in collaboration with Microsoft’s IT depart-
ment (MSIT), we ran into difficulties that required us to
completely re-engineer it.

MSIT was eager to deploy a solution that let idle desk-
tops sleep while keeping them accessible. Currently,
MSIT mandates and enforces a common sleep policy that
achieves energy savings but reduces availability: user
desktops automatically sleep after 30 minutes of inac-
tivity. The goal is not just to save money, but also to
contribute to Microsoft’s overall environmental impact
reduction initiative. If individual users wish to exclude
their machines from this mandate, they have to request
exceptions for each individual machine, and must pro-
vide a reason for seeking the exception. Based on an
informal analysis of the reasons mentioned by the users
seeking exceptions, MSIT decided that a solution that
would automatically wake a sleeping desktop upon re-
mote access would reduce exception requests.

Since deploying special hardware [2] or full virtualiza-
tion [8] would be both too disruptive and too costly [23],
these were not feasible, and only two options remained.

One option was to use the ARP proxy functionality of-
fered by many modern NICs, combined with their abil-
ity to trigger wakeup when observing packets with spe-

cific bit patterns. However, this approach fails in the
presence of complex encapsulation and IPSec encryp-
tion, both of which are commonly used in enterprise net-
works [23]. We also found that wake-on-pattern func-
tionality in many modern NICs is unreliable.

The other possibility was to use a sleep proxy sys-
tem [23], but this too had problems. One issue was
deployment cost, due to its requirement of a dedicated
machine on each subnet. Microsoft’s corporate network
consists of hundreds of subnets, so the cost of deploy-
ing and, more importantly, managing dedicated servers
on each subnet would have been too high.

Worse yet, these servers would constitute a new sin-
gle point of failure for each subnet, impacting the ro-
bustness and availability of the system. Our user stud-
ies showed that most users typically do not access their
machines remotely, but when they do, the need is usu-
ally critical. For example, a salesperson may want to
access some documents from his desktop while meeting
with a client. Thus, each subnet would require additional
backup servers and a system for monitoring liveness to
achieve high availability, further raising the cost.

The same concerns were echoed by IT departments of
some of Microsoft’s largest customers [16]. As a result,
a thorough re-thinking of the solution was needed. In
particular, we decided to re-architect the system to make
it completely distributed and serverless.

3 Background
This section provides a brief primer on Wake-on-LAN

technology and on the original sleep proxy design [18,
23]. The discussion is not comprehensive; it only covers
details useful in understanding our design.

3.1 Wake-on-LAN technology
Basic Wake-on-LAN (WoL) technology [5] has been

available in Ethernet NICs for quite some time. To use
it, a machine enters the S3 or S5 sleep state [11] while
the NIC stays powered on. If the NIC receives a special
magic packet, it wakes the machine. The magic packet is
an Ethernet packet sent to the broadcast address whose
payload contains 16 consecutive repetitions of the NIC’s
MAC address [5].

Because the packet is sent to the broadcast address, it
is generally not possible to wake a machine on a different
subnet. Some NICs do respond to WoL packets sent to
unicast addresses, but this is not true for all NICs. Subnet
directed broadcasts could wake machines in other sub-
nets, but only with special support from routers. Thus,
for robustness, our system relies only on basic WoL func-
tionality and operates only within a single subnet.

3.2 Basic design of the sleep proxy
The core sleep proxy functionality of our system is

similar to that described by Reich et al. [23] We summa-
rize it via an example. Consider two machines S and P ,
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both on the same subnet. S will fall asleep, and P is the
dedicated sleep proxy for the subnet.

When the operating system on S decides the machine
should sleep, it sends a “prepare to sleep” notification to
all running processes. A daemon running on S waits for
this event, then broadcasts a packet announcing that S
is about to sleep. The packet contains S’s MAC and IP
addresses, and a list of open TCP ports in the listen state.

When P receives this packet, it waits for S to fall
asleep. Once pings indicate S has fallen asleep, P sends
appropriately crafted ARP probes binding S’s IP address
to S’s MAC address [23]. These trigger the underlying
layer-2 spanning tree to be reprogrammed such that all
packets meant for S are delivered to P instead. Notice
that this is not address hijacking: it is Ethernet port hi-
jacking [23], which is more general and robust against
various DHCP issues.
P operates its NIC in promiscuous mode, and hence

can observe packets meant for S. P ignores most traffic
meant for S [18], with two exceptions.

First, P answers ARP requests and IPv6 neighbor-
solicitation messages directed to S. This “ARP offload”
functionality is needed to ensure other machines can di-
rect packets to S’s address [18].

Second, if P observes a TCP SYN directed to an open
port on S, it wakes S by broadcasting a magic packet
containing S’s MAC address. The OS on S, upon wak-
ing up, will send its own ARP probes. These reprogram
the layer-2 spanning tree so that all subsequent packets
meant for S are correctly delivered to S instead of to P .

Meanwhile, the client that sent the original TCP SYN
retransmits the SYN several times: 3 sec later, 6 sec after
that, 12 sec after that, etc. Eventually, a retransmitted
SYN reaches S, which is now awake and can complete
the connection in a normal manner. The user experiences
a small delay since the first SYN is not responded to [23],
but otherwise the user experience is seamless.

4 GreenUp Design
The primary goal of GreenUp is to ensure that all par-

ticipants remain highly available while allowing them to
sleep as much as possible. A secondary goal is to rely
only on participant machines, not dedicated servers, to
aid availability and ease deployment. Designing such a
system presents unique opportunities and challenges:
(i) Subnet domains. Each GreenUp instance runs within
a subnet domain, providing an efficient broadcast chan-
nel for communicating and for waking machines up.
(ii) Availability over consistency. The availability of ma-
chines is more important than the consistency of system
state or operations. In particular, strong consistency can
be sacrificed in favor of simplicity or efficiency.
(iii) Load-sensitive, unreliable machines. Running on
end-user machines requires us to limit the resources we

use, e.g. CPU cycles, since users will not tolerate no-
ticeable performance degradation. Also, these machines
may go to sleep at any time, and they may exhibit corre-
lated behavior, e.g. sleeping at similar times.

GreenUp’s design exploits these opportunities and
meets these challenges, using novel techniques that ap-
ply to a broader class of distributed systems. GreenUp is
suitable for enterprises where desktop machines provide
services to remote users. This is the case for Microsoft
and some of its large customers, as we have discussed.
In organizations where desktops are used only as termi-
nals, or where users only use mobile laptops, GreenUp is
not appropriate. In §8, we discuss possible extensions of
GreenUp for certain server cluster settings.

4.1 Overview
To aid the presentation of our design, we introduce the

following terminology. We call a machine with GreenUp
installed a participant. When a participant is capable
of intercepting traffic to sleeping machines, we call it a
proxy. Generally, every participant is a proxy as long as
it is awake. When a proxy is actively intercepting traffic
for one or more sleeping machines, we say it is manag-
ing them: it is their manager and they are its managees.
To manage a participant, a manager needs to know the
managee’s state: its IP address, its MAC address, and its
list of open TCP ports.

The key idea for maintaining availability in GreenUp
is to enable any proxy to manage any sleeping participant
on the same subnet. When a participant goes to sleep,
some proxy rapidly detects this and starts managing it.
For this, we use a scheme called distributed management
that spreads management load evenly over awake prox-
ies by using randomized probing (§4.2). To detect and
manage asleep machines, each proxy must know each
participant’s state, so we distribute it using a scheme
based on subnet broadcast called subnet state coordina-
tion (§4.3). This scheme tolerates unreliable machines
and provides eventual consistency for participants’ views
of state. Distributed management will stop working if all
proxies go to sleep, a condition we call apocalypse. Us-
ing real trace data, we demonstrate that such correlated
sleep behavior is plausible, and consequently show how
to use guardians (§4.4) to always maintain a minimum
number of awake proxies.

Figure 1 shows an example illustration of these tech-
niques from our live deployment. The coming sections
explain them in greater detail.

4.2 Distributed management
In this section, we discuss our scheme for distributed

management. The techniques we develop here can be
used by any distributed system to coordinate a global task
using local methods, provided the system can tolerate oc-
casional conflicts. In our scheme, proxies do not explic-
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Figure 1: Live operation of GreenUp. Awake proxies are colored black, guardians have an additional white border,
and asleep or shut down machines are gray. Participants use subnet state coordination to exchange state, shown in
the inset of M4. M1 starts shutting down at 11:18 am on July 11; its abandoned managees S1 and S2 are managed
again 29 seconds later via distributed management. M1 is managed 16 seconds after that, since it required time to shut
down. Guardians M5, M6, and M7 stay awake to prevent apocalypse.

itly coordinate, yet they ensure a sleeping participant is
rapidly detected and managed (§4.2.1). In the event that
multiple proxies accidentally manage the same partici-
pant, they quickly detect this and all but one back off
(§4.2.2). Due to our distributed setting, our managers op-
erate differently (§4.2.3) from the sleep proxy described
in §3.2.

4.2.1 Distributed probing

To maintain the availability of sleeping machines, we
need to ensure that asleep participants are always man-
aged. It might seem that we could rely on participants
to broadcast a notification when they are about to sleep,
but this is unreliable. The notification may not be seen if
there is network loss, if the participant fails, or if the par-
ticipant is already asleep and its current manager fails.
Thus, proxies must continually monitor participants to
discover when they become both asleep and unmanaged.

As we will see in §7.2, monitoring every participant on
a large subnet can cause noticeable load. Because of the
load sensitivity challenge, we distribute the monitoring
work across all proxies via distributed probing, as fol-
lows. Each proxy periodically probes a random subset
of participants. If a participant is awake, it responds to
the probe; otherwise, its manager responds on its behalf.
If the proxy receives no response, it starts managing the
machine itself. Note that assigning the management task
to the proxy that first detects the sleeping machine effec-
tively distributes the management load across all proxies,
as we prove in §5.2.

A proxy probes a participant by sending it two pack-
ets: a TCP SYN to a GreenUp-specific port, and an
ICMP echo request or ping. If the machine is awake,
its operating system will send an ICMP echo reply. If
the machine is managed, its manager will be watching
for TCP SYNs to it, and will respond to the probe with a
UDP message indicating the machine is managed. If the
proxy hears neither response, it resends the probe packets
every second until a sufficiently long period passes with-
out a response, at which point it concludes the participant
is asleep and unmanaged. In our current implementation,

we use a timeout of 25 seconds, which we consider a rea-
sonable amount of time to ascertain a machine is asleep.

Our goal is to start managing participants quickly once
they or their current managers fall asleep. This means
we cannot let a participant go very long without some
proxy probing it, necessitating a periodic rather than
exponential-backoff scheme. Thus, each proxy uses the
following random probing schedule to ensure each par-
ticipant is probed once every s seconds with probability
p. Given S, the set of participants it is not managing,
and K, the set of proxies, it probes a random subset of S
of size − ln (1− p) |S|/|K| every s seconds. We prove
in §5.1 that this quantity achieves our goal. In our cur-
rent implementation, we use p = 90% and s = 3, so
an asleep unmanaged machine is probed within 3 sec-
onds with probability 90% and 6 seconds with probabil-
ity 99%. These parameters limit the additional delay be-
yond 25 seconds that we must wait to ensure a machine
is asleep.
4.2.2 Resolving multiple management

Distributing responsibility for a service is useful for
simplifying coordination and spreading load, but it can
lead to conflict. It is best suited for distributed systems,
like ours, in which limited conflicts are acceptable as
long as they are eventually resolved. We now discuss our
approach to resolving conflicts arising from distributed
probing.

Conflict arises when distributed probing leads to more
than one proxy simultaneously managing the same sleep-
ing machine S. This is acceptable, since multiple man-
agers do not interfere in their fundamental duty of wak-
ing up S, and reflects our decision to err in favor of en-
suring availability rather than consistency. However, it is
wasteful of network bandwidth and causes churn in the
switches’ spanning tree: each manager will reply to ARP
requests for S, causing the switch to relearn the port each
time. Thus, we take the following steps to eventually de-
tect and resolve multiple management.

We define the priority of a proxy P to manage a sleep-
ing machine S as the hash of the concatenation of P and
S’s MAC addresses. In what follows, assume S is the
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managee currently managed by M , H is a manager with
higher priority, and L is a manager with lower priority.

1. If M hears a message from H indicating it is man-
aging S, M stops managing S and sends an ARP
request for S’s IP address. The purpose of the ARP
request is to trigger H to send an ARP response,
thereby taking control of S’s port away from M .

2. IfM hears a message from L indicating it is manag-
ing S, it sends a message to L saying S is managed.
This causes L to perform step 1.

We will see in §4.3 that each manager broadcasts a mes-
sage upon managing a machine, and periodically re-
broadcasts it. Therefore, it will eventually trigger one
of the conditions above.

Other distributed systems may choose different ap-
proaches for conflict resolution, such as exponential
backoff. We use priority assignment because during
conflict it maintains multiple servicers rather than zero.
Specifically, while two or more proxies are deciding
which among them should manage a sleeping machine,
it remains managed by at least one of them.
4.2.3 Manager duties

When a proxy P manages a sleeping participant S, it
acts largely the same as the sleep proxy described in §3.2.
For instance, P uses Ethernet port hijacking to monitor
traffic to S, maintains S’s network presence by respond-
ing to ARP requests, and wakes S if it sees a TCP SYN
to an open port. However, there are a few notable differ-
ences arising from the distributed nature of GreenUp.

First, P monitors not only incoming SYNs destined
for S but also outbound SYNs destined for S. This is
because, unlike the dedicated sleep proxy [23], P is an
end-user machine whose user may actually be trying to
connect to a service on S. Since P has hijacked S’s port,
any traffic it sends to S will be dropped by the switch—
not sent back to P—to avoid routing loops. Thus, the
only way for P to detect a local attempt to connect to S
is by monitoring its own outgoing traffic.

Second, as discussed in §4.2.1, P must respond to
SYNs for S on the special probing port by saying S is
managed. Otherwise, the prober will conclude S is un-
managed and start managing it.

4.3 Subnet state coordination
The distributed probing and management algorithm in

§4.2 assumes that each proxy knows the state of each par-
ticipant in the subnet. Thus, we need participant state to
be reliably distributed to all proxies despite our use of un-
reliable, load-sensitive machines with correlated behav-
ior. In this subsection, we describe our approach to this
called subnet state coordination. This technique is appli-
cable to any distributed system that needs to disseminate
state among a set of machines on the same subnet, but
does not require strong consistency for this state.

We chose not to use a fault-tolerant replicated ser-
vice [6, 14, 25], since a correlated failure such as a power
outage or switch failure could subvert its assumption of a
fixed fault threshold, rendering it unavailable. Also, the
provision of strong consistency is overkill since small
differences in proxies’ views of the global state do not
cause problems. For our system, eventual consistency is
sufficient.

Unlike gossip [9, 10], subnet state coordination ex-
ploits the fact that all participants are on the same sub-
net. Thus, (1) they have an efficient broadcast channel,
(2) they can wake each other up using the scheme in §3.2,
and (3) they are all loosely time-synchronized (e.g., via
NTP). Our technique consists of three elements:

1. Periodic broadcast. Each participant periodically
broadcasts its state, using a period equal to the max-
imum desirable staleness. It also broadcasts its state
whenever it changes.

2. Rebroadcast by managers. When a participant is
asleep, its manager is responsible for its broadcasts.

3. Roll call. Periodically, there is a window during
which all asleep participants are awakened. Each
proxy drops from its participant list any that do not
broadcast during this window.

Periodic broadcast takes advantage of the efficient broad-
cast channel, and would be sufficient if participants were
perfectly reliable. However, since they run on machines
that can sleep at any time, rebroadcast by managers is
required to ensure that state about sleeping participants
is also disseminated. Because a machine that has failed
or is no longer participating in GreenUp is hard to dis-
tinguish from a sleeping participant, the roll call is used
to identify the current set of participants. It ensures that
each proxy eventually removes the state of a former par-
ticipant, and thus stops trying to manage it; as we dis-
cuss in our technical report [26], it is acceptable for this
to happen eventually rather than immediately. For dura-
bility, proxies store their global view of state on disk.

We call the periodic broadcasts of state heartbeats.
When a participant sends a heartbeat about itself, we call
this a direct heartbeat. When a participant sends a heart-
beat about another participant, we call this an indirect
heartbeat. Each direct heartbeat includes a timestamp,
and each indirect heartbeat includes the timestamp of the
last direct heartbeat on which it is based. This way, if a
proxy knows more recent state about a participant than
the participant’s manager, it can inform the manager.

As a side effect of receiving heartbeats, a proxy learns
which participants are awake and which are managed.
It uses this to compute the sets S and K for distributed
probing, and also for apocalypse prevention below.

For the roll call, we use a window of ten minutes each
day, which is long enough to account for clock skew.
Since one of our goals is to let machines sleep as much

5



as possible, we choose a roll call window when most ma-
chines are awake anyway, which in our organization is
2:00 pm–2:10 pm.

In environments where there is already a highly-
available means for sharing state, like Bigtable [7] or
HDFS [27], that system could be used instead of sub-
net state coordination. However, by using subnet state
coordination, our system becomes instantly deployable
in any environment with no external dependency.

4.4 Preventing apocalypse
While allowing proxies to sleep increases energy sav-

ings, we cannot allow too many to sleep, for two rea-
sons. First, proxies may become overloaded, due to the
demands of distributed probing and management. Sec-
ond, we may reach a state where no proxy is awake, i.e.,
apocalypse. This is a disastrous scenario because users
who participate in GreenUp have no way of contacting
their machines during apocalypse.

Initially, we thought we could rely on the natural be-
havior of proxies to prevent apocalypse, and only force
them to stay awake when their number reached a danger-
ously low threshold. However, this approach only works
if machines sleep independently, which we show is un-
true (§4.4.1). Thus, we develop a technique that main-
tains a minimum number of awake proxies at all times
(§4.4.2). This technique can be used by any distributed
system to prevent system failures caused by correlated
sleep behavior.

4.4.1 Non-independent sleep behavior
Since GreenUp is targeted for corporate deployment,

we require apocalypse to occur with extremely low prob-
ability. Such a low probability can only be derived if ma-
chines go to sleep independently, so their probabilities
multiply. That is, if each awake proxy i ∈ K goes to
sleep with probability pi, then we would like to say that
the probability all |K| machines sleep is

∏
i∈K pi, which

decreases exponentially.
Unfortunately, we were unable to confirm independent

sleep behavior from our data. For this analysis, we used
data provided to us by Reich et al. [23] tracing the sleep
behavior of 51 distinct machines over a 45-day period
ending 1/3/2010. We measured the pairwise indepen-
dence of every pair of machines A,B with at least 100
samples each, by computing the distribution of: (1) the
time to the next sleep event ofB from a sleep event ofA;
and (2) the time to the next sleep event of B from a ran-
dom time. Given sufficient samples, these distributions
should be statistically similar if A and B sleep indepen-
dently. We measured statistical distance using the two-
sample Kolmogorov-Smirnov (K-S) test [13, p. 45–56].
At significance level α = 0.05, we found that over 61%
of the 523 pairs of machines tested failed. We conclude
that we cannot rely on the natural behavior of machines

to prevent apocalypse, and instead opt for a design that
always keeps some machines awake.

4.4.2 Guardians
Since proxies exhibit unreliable, correlated sleep be-

havior, our approach to prevent apocalypse is to maintain
a minimum number of guardians at all times, i.e., prox-
ies that prevent themselves from automatically sleeping.
They do so by making a special Windows request indicat-
ing the machine should not sleep. Maintaining guardians
serves a similar purpose to deploying a static set of proxy
servers, but with the advantages of zero deployment cost
and resilience to failures of particular machines.

Since even guardians can become unavailable, e.g.,
due to users hitting power buttons, we require multi-
ple guardians to ensure high availability. The number
of guardians we use is described by a function q(n) =
max{Q, n

B }, where n is the number of participants and
Q and B are constants. The purpose of Q is to make
unlikely the situation that all guardians simultaneously
fail. The purpose of B is to limit the probing and man-
agement load of each proxy. We discuss our choice of
Q = 3 in §7.3 and our choice of B = 100 in §7.2.

For the sake of load distribution and to avoid relying
on individual machines, proxies dynamically choose the
current set of q(n) guardians. They use the same deter-
ministic algorithm for this, and thus independently reach
the same decision. Specifically, each proxy computes its
position in an ordering of the proxies K, by hashing the
MAC address of each proxy with the current date. A
proxy becomes a guardian if and only if it is in one of
the q(n) highest positions. If a proxy ever notices that
there are only q(n)− c proxies, it wakes the c asleep par-
ticipants with the highest positions. If any of these par-
ticipants does not wake up within a reasonable period, it
wakes the next-highest asleep participant, and so on.

The above approach only fails when all guardians stop
so close together in time that they cannot detect this,
such as during a power outage. Fortunately, when power
is restored, the proxies with Wake-on-Power enabled in
their BIOS will come back on and use their durably-
stored state to bring GreenUp out of apocalypse. Unfor-
tunately, Windows currently does not support program-
matically enabling Wake-on-Power, and machines that
do not Wake-on-Power and are unable to Wake-on-LAN
from an off state cannot be woken after a power out-
age. Thus, we plan to programmatically enable Wake-
on-Power when it becomes available, and also plan to
advise users to enable it manually for the time being.

5 Analysis
This section analyzes certain stability, correctness, and

efficiency properties of GreenUp. In doing so, we ana-
lytically justify several of GreenUp’s design decisions,
including its key parameter choices. We guide our anal-
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ysis by modeling the lifecycle of a participant as a state
machine with stable and unstable states, shown in Fig-
ure 2. Our system maintains the invariant that it con-
verges quickly and reliably to stable states.

5.1 Probe frequency and amount
Let K be the set of proxies. Every s seconds, each

proxy i ∈ K sends bi probes uniformly at random to
n − mi participants, where mi is the number of partic-
ipants managed by i, including itself. Declare a round
of probing to be complete when all

∑
i∈K bi probes have

been sent. We only care about a participant being probed
if it is asleep and unmanaged, as otherwise it does not
require probing.

Lemma 1. If bi = −(n − mi) ln(1 − p)/|K| for 0 <
p < 1, then the probability that an asleep, unmanaged
participant remains unprobed after a round is at most
1−p, and the expected number of unprobed participants
is concentrated about its mean.

Proof. Let Zj be the indicator random variable for par-
ticipant j remaining unprobed after a round. By assump-
tion, no proxy is j’s manager, so all proxies probe j:

Pr(Zj = 1) =
∏
i∈K

(
1− 1

n−mi

)−(n−mi) ln(1−p)

|K|

≤
∏
i∈K

e
ln(1−p)
|K|

=
(
(1− p)

1
|K|

)|K|
= 1− p

To show concentration about the mean E[Z] =∑
j E[Zj ] ≤ n(1−p), we apply Azuma’s inequality [17,

p. 92] to an appropriate martingale sequence.

Moreover, the probability a participant is unprobed de-
creases by (1− p) each round, i.e., exponentially. We set
p = 90% in our implementation, ensuring that transition
C in Figure 2 is fast and reliable.

5.2 Management load
We can view participants falling asleep as a balls-in-

bins process [21]. Initially, there are n awake proxies
and each has a “ball”. When proxy i goes to sleep, i and
its managees are eventually managed by random proxies
due to distributed probing: in effect, i throws mi balls
randomly over the awake proxies. When i wakes up, it
stops being managed: in effect, i retrieves its ball.

Lemma 2. After t sleep events, the distribution of man-
agees on the n − t awake proxies is identical to that of
throwing t balls into n−t bins uniformly at random [21].

Proof. Let Xk be the set of proxies whose balls are
thrown during the kth sleep event, for 1 ≤ k ≤ t. We
characterize the probability of proxy i’s ball landing in
proxy j. If i ∈ Xt, then the probability is Pt = 1/(n− t)
since this is the last sleep event. For 1 ≤ k ≤ t − 1,
observing that each proxy’s ball is (re)thrown indepen-
dently of any other ball, the probability is:

Pk = Pr[i ∈ Xk throws ball in j]

=

(
n− t
n− k

)(
1

n− t

)
+

(
t− k
n− k

) t∑
j=k+1

Pj

t− k

since either i lands in an awake proxy (one of which is
j), or i lands in one of t − k proxies that subsequently
sleep. Since Pt = 1/(n− t), this recurrence gives Pk =
1/(n− t) for all 1 ≤ k ≤ t.

Lemma 2 implies that transitions C and D preserve
load balance when a proxy goes to sleep. We now de-
scribe two optimizations to these transitions that have not
yet been implemented. First, if proxies awaken at ran-
dom, we can preserve load balance by giving an awak-
ened proxy half of its previous manager’s managees.
Second, when a proxy is about to sleep, we can avoid
the period during which its managees are unmanaged by
explicitly handing them off to another proxy chosen at
random. The resulting process is closely related to the
“coalescent” process in population genetics [12] used to
trace the origins of a gene’s alleles. We have studied the
load properties of the process and have proved the fol-
lowing result, to appear in a forthcoming report:

Theorem 1. After t random sleep events using the above
hand-off policy, the expected maximum number of man-
agees on an awake proxy is less than Hn−t times the
optimal n/(n− t), where Hi are the harmonic numbers.

5.3 Other transitions and cycles
Our apocalypse prevention scheme in §4.4.2 ensures

that transition C is reliable. The remaining transitions in
Figure 2 are easy to argue. Transition J is fast because
participants broadcast their state whenever it changes.
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The multiple management protocol ensures transition L
occurs and prevents transition D by using a determin-
istic hash on proxy priorities. Cycles (A,B) and (E,F)
are unlikely: data from our deployment shows that less
than 0.88% of sleep intervals are shorter than 30 sec-
onds (enough time to determine a machine is asleep),
and less than 0.68% of awake intervals are less than 10
seconds (plenty of time for a broadcast). Cycles (G,H)
and (K,L) are indicative of connectivity issues, which we
address in §6. Cycle (A,C,E,G) is rare because views
are kept consistent by subnet state coordination and man-
agers only awaken managees for legitimate requests.

6 Implementation
We implemented GreenUp in C#, using four main

modules: (1) a state collector, which implements subnet
state coordination; (2) a prober, which implements dis-
tributed probing; (3) a proxy, which implements traffic
interception by interfacing with a packet sniffer; and (4)
a logger, which collects debugging information and peri-
odically uploads the logs to a central location. The cur-
rent implementation of GreenUp is 9,578 lines of code
according to SLOCCount [33]. It is packaged with a
client UI, not discussed in this paper, that presents in-
formation to the user like how often her machine sleeps.
TCP SYNs in probes. Our initial implementation used
UDP packets instead of TCP SYNs when probing. How-
ever, UDP packets are often encrypted with IPSec using
key material shared between the prober and probe target.
If the probe target is managed, the manager intercepting
its traffic would find these packets undecipherable and
would not be able to respond, leading the prober to in-
correctly conclude that the target is unmanaged.

To fix this problem, we switched to TCP SYNs, which
are not encrypted with IPSec in our network [23]. This
solution has an important advantage: When a manager
responds to a probe, it demonstrates not only its ability to
successfully intercept traffic, but specifically its ability to
intercept and recognize TCP SYNs, which is required to
wake up a managee on actual connection attempts. This
makes our protocol highly robust: If a proxy is not doing
a good job of managing a sleeping node, another proxy
will detect this and take its place.
Fail-safes. Since GreenUp runs on end-user machines,
we implemented some fail-safes for added protection.
First, we monitor the moving average of the GreenUp
process’s CPU utilization and, if it reaches a certain
threshold (e.g., 20%), we disable the proxy functional-
ity of that machine temporarily. Second, proxies monitor
their suitability for management by making sure they re-
ceive regular probes for managees and ensuring connec-
tivity to the subnet’s default gateway. If a proxy decides
it is unsuitable to manage machines, it stops doing so;
as with any type of proxy failure, other proxies will dis-
cover the abandoned managees and start managing them.
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Figure 3: Number of participants each day, broken down
by subnet. Each pattern depicts a different subnet.

7 Experiences and Lessons Learned
In this section, we evaluate GreenUp based on our de-

ployment within Microsoft Research. Figure 3 shows the
number of users per subnet. At peak, we had 101 partic-
ipating user machines, with 66 on a single subnet. The
jump on February 2 is due to an advertisement e-mail we
sent. We see some attrition as people replace their com-
puters and our advertising wanes, but as of September 13
there were still 84 participants. The participants were a
mixture of 32-bit and 64-bit Windows 7 machines.

This section has two main goals: to demonstrate
that GreenUp is effective and efficient, and to describe
lessons we have learned that will help future practi-
tioners. To do so, we answer the following questions.
§7.1: Does GreenUp consistently wake machines when
their services are accessed? When it does not, why
not? §7.2: Is GreenUp scalable to large subnets? §7.3:
Does GreenUp succeed at maintaining enough awake
machines for the proxy service to be perpetually avail-
able? §7.4: How much energy does GreenUp potentially
save? §7.5: How well does GreenUp do at waking a
machine before the user attempting to connect gives up?
For answers to questions unrelated to our distributed ap-
proach, such as the frequency of different wakeup causes,
see our earlier work [23].

7.1 Machine availability
In this section, we evaluate how effective GreenUp is

at meeting its main goal, waking machines when there
are attempts to connect to them. First, we describe an
availability experiment we conducted on GreenUp ma-
chines (§7.1.1). Then, since we find WoL failures to be
a common cause of unavailability, we analyze GreenUp
history to determine how often they occur (§7.1.2).
7.1.1 Availability experiment

To test the availability of machines running GreenUp,
we used the following experiment. For each participating
machine, we do the following from a single client: First,
the client pings the machine, and records whether any re-
sponse is received. Next, the client attempts to establish
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Experiment start Already awake Woken Unwakeable

8pm Sat, Mar 12 47 31 1
5pm Sun, Mar 13 56 24 1
9pm Mon, Mar 14 56 26 0
9pm Tue, Mar 15 55 26 0

10pm Wed, Sep 21 35 28 0
10pm Thu, Sep 22 44 19 0
6pm Sat, Sep 24 37 27 1
5pm Sun, Sep 25 38 27 0

11pm Mon, Sep 26 42 24 1
9pm Tue, Sep 27 41 25 1

10pm Wed, Sep 28 45 21 0

Table 1: Results of trying to wake GreenUp machines by
connecting to them. WoL issues on two machines cause
four failures; a temporary network problem causes one.

an SMB connection (TCP, port 139) to the machine. Bar-
ring a few exceptions, all machines in Microsoft have this
port open. Finally, the client pings the machine again. If
the machine responds to the first set of pings, we con-
sider it already awake; otherwise, if it responds to the
second set, we consider it woken; otherwise, we consider
it unwakeable. In cases where the machine is unwake-
able, we investigate whether it was in a state from which
its owner would not expect GreenUp to wake it, and in
that case do not count it. For instance, we do not count
instances in which a machine was shut down, hibernated,
removed from the network, or broken.

We exclude from consideration machines that appear
to be laptops, since we cannot distinguish unwakeability
from lack of physical connectivity. GreenUp is not in-
tended for laptops unless they are tethered like desktops,
but some users installed it on mobile laptops anyway.

Results of repeated runs of this experiment are shown
in Table 1. We find that in 5 cases, 0.6% of the total,
GreenUp failed to wake the machine.

Four failures occurred because two machines, one
time each, entered a state in which WoL packets sent
by GreenUp did not wake them. In each case, the state
lasted long enough for two consecutive wake attempts
to fail. For the machine unwakeable on March 12 and
13, the unwakeability seems to have been caused by
GreenUp sending it a WoL packet too soon after it had
become unavailable: 5 sec and 20 sec, respectively.

Our logs indicate that the fifth failure occurred because
of an aberrant network condition that lasted for 36 min-
utes. During this time, the machine’s manager was not
receiving TCP SYNs from machines outside the subnet,
but was receiving them from machines inside the subnet.

Our logs show that the data from this run is representa-
tive of the entire seven month deployment period. Thus,
we conclude that GreenUp is extremely reliable. When
it does fail to wake up a machine, it is typically because
a WoL packet sent by the manager fails to wake up the
managee. While these failures are rare, they merit more
investigation, which we do next.

0
10
20
30
40
50
60
70
80
90
100

0 10 20 30 40 50 60 70 80 90 100

C
D

F
 (

%
) 

Time to sleep and become managed (sec) 

2/3/2011 - 3/9/2011

4/1/2011 - 9/19/2011

Figure 4: CDF of the time between when a machine be-
gins to sleep and when it becomes managed, before and
after deployment of a delay to mitigate WoL bugs.

7.1.2 Wake-on-LAN failures
We now investigate WoL failures in more detail. In

many cases, we were able to trace the problem to out-
of-date driver, firmware, or NIC hardware. However, we
also discovered a rare WoL failure mode affecting a small
subset of machines in our deployment. These machines
respond correctly to WoL under normal conditions, but
if we attempt to wake them up while they are in the pro-
cess of sleeping, they became permanently unwakeable
via WoL until the next reboot! Further tests revealed
that the issue can generally be avoided if we wait at least
30 seconds after a machine becomes unresponsive before
attempting a wakeup.

Thus, in mid-March we deployed an update that
spends 25 seconds probing a machine before deciding
to manage it instead of our original timeout of 15 sec-
onds. This has the side benefit of reducing the likelihood
that a manager mistakenly manages an awake machine,
but it also increases the time to wake a machine in the un-
likely event that an access occurs just as the machine falls
asleep or its manager becomes unavailable. Fortunately,
this event should be rare: Figure 4 shows that a machine
is nearly always managed within a minute of beginning
to sleep, and a minute is a small fraction of 3.6 hours, the
average period a machine spends asleep.

We measured the overall frequency of WoL failures
by searching GreenUp logs for events where a machine
issues a WoL but the target does not wake up within
180 seconds—enough time for even the slowest-waking
machines. However, we must be careful to exclude false
positives, such as attempts to wake up a machine that has
been shut down. We find that the WoL failure rate is not
statistically different before and after the update, mainly
because it is tiny to begin with: in the entire period from
Feb 3 to Sep 19, 0.3% of WoL attempts are failures. We
conclude that WoL is a generally reliable mechanism.

7.2 Scalability
We now evaluate the overhead of running GreenUp,

including CPU utilization and network bandwidth, and
the implications for scalability to large subnets.

9



0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

C
D

F
 (

%
) 

CPU utilization (%) 

0 1 2 3 4 5

Figure 5: CDF of CPU utilization of GreenUp. Each line
represents a different number of managed machines.

# of managees CPU utilization

100 12%
200 21%
300 29%

Table 2: CPU utilization on a testbed machine as a result
of simulating different management loads.

7.2.1 Observed CPU utilization
One concern about GreenUp is the load it places on

each participating machine. Qualitatively, we note that
our users have never complained about excessive load.

To evaluate the load quantitatively, we had GreenUp
record, every ten minutes, the CPU utilization of its pro-
cess. Figure 5 shows the results in CDF form: for a given
number of managees, it shows the CDF of all CPU uti-
lization observations made while the observer was man-
aging that number of managees.

We see that CPU utilization jumps notably when the
number of managees goes from zero to one. The median
goes from 0.0% to 0.8%, the mean goes from 0.2% to
1.1%, and the 95th percentile utilization goes from 0.4%
to 3.5%. This is because most of the CPU overhead is
due to parsing sniffed packets, and this is only neces-
sary when managing machines. We see that the overall
overhead from parsing these packets is minor, increasing
CPU utilization by less than 1%.

We also observe that managing additional machines
increases overhead only slightly: going from one man-
aged machine to five managed machines increases mean
CPU utilization from 1.1% to 1.3%, and increases 95th
percentile utilization from 3.5% to 3.9%. It is difficult to
extrapolate from this data since it occupies such a small
range, but it suggests that managing 100 machines would
yield average CPU utilization of about 13%. In the fol-
lowing subsection, we present another way of estimating
the overhead of managing multiple machines.
7.2.2 Scalability of CPU utilization

For this experiment, we simulate the load of manag-
ing a large number of machines in a small testbed. We

use three machines, each a 32-bit Windows 7 machine
with a 2.4-GHz Intel Core 2 6600, 4 GB of memory, and
a 1 Gb/s Ethernet card. One goes to sleep, one man-
ages the sleeping machine, and one just sends probes.
We increase the probe rate so that the manager sends and
receives as many probes as it would if there were n sleep-
ing participants per proxy. We disable the load fail-safe
discussed in §6 so we can observe CPU utilization no
matter how high it gets.

Note that there are other, minor sources of overhead
from managing other machines that we do not simulate.
We do not simulate sending heartbeats for each managee,
since sending one heartbeat per managee every five min-
utes is dwarfed by the overhead of sending ~0.8 probes
per managee every second. We also do not simulate re-
plying to ARP and ND requests, since we have found
such requests to be rare: fewer than 0.05/sec per man-
agee. Finally, we do not simulate parsing SYNs destined
for managees since these are even rarer.

Table 2 shows the load on the manager, which we note
is somewhat underpowered compared to the typical desk-
top in our organization. We see that even for this ma-
chine, its average CPU utilization when managing 100
machines is 12%, well under our target 20% cap. Recall
that we ensure that at least one proxy is always awake for
every 100 participants in the subnet, so this shows that
load is kept at a reasonable rate. The table also shows
that as the number of managees rises to 200 and above,
load becomes less reasonable, arguing for our require-
ment of at least one proxy per 100 participants.

Note that we could reduce this load substantially by
increasing the probing period. For instance, changing s
from 3 sec to 6 sec would reduce the load by roughly
half. The cost is that it would take slightly longer for an
unmanaged sleeping machine to become managed. This
trade-off hardly seems worthwhile given that we rarely
expect a manager to have even close to 100 managees.
After all, as we show in §7.3, a far greater fraction of
machines than 1/100 tend to be awake at any given time.

7.2.3 Network utilization
Another factor impacting scalability is network uti-

lization. Each GreenUp participant sends and receives
probes and heartbeats, and in some cases this traffic
scales with the number of participants on the subnet.
Qualitatively, this overhead is tiny; we have not received
any complaints about GreenUp’s network utilization.

To evaluate network utilization analytically, we begin
by noting the sizes of various packets we use. The probe
SYNs, UDP responses, and ICMP pings are all less than
100 bytes including all headers. The heartbeat packet
size depends on the number of ports reported; on our
main subnet, the maximum is 554 bytes and the average
is 255 bytes. A simple calculation, omitted due to lack
of space, shows that even if a machine were to manage
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Figure 6: For two different subnets, the number of machines in various roles over time. A circle overlayed on the left
graph shows an anomalously long period of time with fewer than three guardians, due to a bug in the implementation.

100 participants in a 1,000-node subnet, it would con-
sume less than 90 Kb/s of upload bandwidth and 60 Kb/s
of download bandwidth. Since typical enterprise LANs
have 1 Gb/s capacity, this load is negligible.

7.3 GreenUp availability
We now evaluate the effectiveness of GreenUp’s

guardianship mechanism. Recall that it aims to keep at
least three machines awake on each subnet.

The methodology for our evaluation is as follows. Ev-
ery minute, from a single server, we ping every partic-
ipating machine. If it does not respond, we consider it
asleep. Otherwise, we consider it a guardian if its logs
indicate it was a guardian then.

Figure 6 shows the results for the subnet with the
largest participation and for a representative subnet with
low participation. We see that our guardianship protocol
works as expected: generally, there are three guardians,
and when occasionally a guardian becomes unavailable,
it either returns to availability or is replaced. In one in-
stance, a guardian failed in an undetected manner and
was not replaced. This is highlighted in the figure with a
white circle: February 4 between 12:46 pm and 2:10 pm.
We traced this to a bug in the implementation, which
we promptly fixed: if GreenUp is uninstalled from a
guardian machine but the machine remains awake, others
incorrectly believe it remains a guardian.

Another important element we observe is that at all
times a large number of machines are awake even though
they are not guardians. This observation suggests that
we could save energy by preferentially selecting ma-
chines as guardians if they would be awake anyway; this
is something we plan to do in future work. By pri-
oritizing already-awake machines to be guardians, we
should be able to fully eliminate the energy cost of keep-
ing guardians awake. On the other hand, this observa-
tion also shows that choosing random machines to keep
awake has a lower cost than expected. Since at least

half of non-guardian machines are typically awake, this
means that at least half the time a machine is a guardian
it would have been awake anyway.

7.4 Energy savings
To evaluate how much energy GreenUp can save, we

measure the amount of time GreenUp participants spend
asleep. This is readily deduced from logs that indicate
when machines went to sleep and woke up. Figure 7
shows the results for Feb 3 through Sep 19; overall, the
average participant spends 31% of its time asleep.

An alternative approach to GreenUp’s goal of high
availability is to not let machines sleep. Thus, by us-
ing GreenUp rather than keeping machines awake, we
increase sleep time by approximately 31% per day. If the
average idle power consumed by desktops is 65 W, then
GreenUp saves approximately 175 kWh per machine per
year; at 10¢/kWh, this is $17.50 per machine per year.

It would be useful to evaluate whether GreenUp in-
duces users to let their computers sleep more. However,
as discussed in §2, the IT department in our organization
mandates and enforces a common sleep policy, and users
must go to great lengths to change machine sleep behav-
ior. Thus, for our users the benefit of GreenUp is avail-
ability, not energy savings. In future work, we would
like to evaluate whether, in an organization without such
mandates, GreenUp induces users to choose more ag-
gressive sleep policies and thereby save energy.

7.5 User patience
GreenUp’s design is predicated on the assumption that

users trying to connect to a sleeping machine will con-
tinue trying long enough for GreenUp to detect this and
wake the machine. To validate this, we now characterize
such user patience, and compare it to how long GreenUp
takes to wake machines.

To evaluate user patience, we exploit a serendipitous
side effect of the occasional unreliability of WoL. When
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Figure 8: Comparison of how long GreenUp takes to
wake machines with how long it has to wake machines,
based on evaluation of user patience

a manager detects a TCP connection attempt, but the
WoL packet it sends has no effect, the manager’s logs
show just how long the user continued trying, in vain, to
connect to the machine.

In our trace data from Feb 3 through Sep 19, we found
48 events in which there was a connection attempt that
allowed us to gauge user patience. Figure 8 shows the
results. We find the CDF to be a step function, which
is unsurprising given the behavior of TCP: after the first
SYN, it sends the next four SYNs roughly 3 sec, 9 sec,
21 sec, and 35 sec later. It appears that 10% of con-
nection attempts send only the first SYN and thus pro-
vide GreenUp no time at all to wake the machine. Most
likely, many of these are port scans from the IT depart-
ment’s security system, but since we cannot definitively
tell this we conservatively estimate them to be highly im-
patient users. A further 3% send only two SYNs, giving
GreenUp 3 sec to wake the machine. A further 22% send
only three SYNs, giving GreenUp 9 sec. The remain-
ing 65% send at least five SYNs, giving GreenUp more
than 30 sec. Indeed, the most patient 44% seem to try
connecting for over five minutes.

Figure 8 also shows how long it takes for GreenUp
to wake machines via WoL, using the methodology
from §7.1.2. We see that 87% of wakeups take 9 sec
or less, so even the 22% of users who are so impatient
as to wait only this long can often be satisfied. A full
97% of wakeups take 30 sec or less, so the 65% of users
who wait at least this long can nearly always be satisfied.

Naturally, the 44% of users who wait at least five min-
utes are satisfied as long as GreenUp eventually wakes
the machine, which as we showed earlier happens over
99% of the time.

Convolving the distribution of user patience with wake
time, we find that GreenUp will wake the machine
quickly enough to satisfy user patience about 85% of the
time. This is about as good as can be expected given that
13% of the time users, or possibly port scanners appear-
ing to be users, are so impatient as to stop trying after
only 3 sec. It may be useful, in future deployments, to
convey to users the value of waiting longer than this for
a connection.

8 Discussion and Future Work
The feedback on GreenUp has been positive, and a

larger deployment on ~1,100 machines is currently on-
going. We also continue to improve GreenUp and our
users’ experience. This section discusses some key is-
sues and areas of ongoing work.
Dynamic layer 2 routing. GreenUp uses spoofed
packets to make switches send packets meant for a sleep-
ing machine to its manager. One may view this as med-
dling with the layer 2 routing protocol, but this is a very
common technique, and has been used for many years.
Indeed, exactly the same process takes place when a ma-
chine is unplugged from one Ethernet port and plugged
into another. Some organizations disallow such port
changes, but this is not common because it prevents em-
ployees from moving machines around without approval
from IT staff. In our experience, no switches have exhib-
ited adverse behavior due to such routing changes.
Handling encrypted traffic. GreenUp does not work
if all traffic on the network is encrypted. Indeed, we had
to implement special exceptions [26] when our organi-
zation began using DirectAccess [15], an alternative to
VPN that encrypts all traffic with IPSec. We note that
this shortcoming is shared by centralized schemes [18,
23] as well as NIC-based schemes [2]. We are cur-
rently devising techniques to improve our handling of
encrypted traffic. For example, a manager can identify
IPSec key exchange traffic to a sleeping machine and de-
termine when a new security association is being set up
or renewed; in certain scenarios, it may be appropriate
to wake the machine. However, the only foolproof way
to deal with encrypted traffic is to use a system such as
LiteGreen [8], or to modify the client to send a specially
crafted packet before it attempts to establish a connection
to a sleeping machine.
Increasing availability. GreenUp achieves over 99%
availability; we want to do better. Since most failures
are due to WoL problems, we have built a mechanism to
automatically test each participant for persistent WoL is-
sues and inform users. However, we want to get to the
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Figure 9: Load profile of a four-machine energy-efficient
NLB cluster. A negative load indicates the machine is
asleep. Traffic is gradually increased between 75 sec and
475 sec and then stopped.

root of all WoL issues and either directly fix them or in-
form hardware and software developers how to fix them.

A brief window of unavailability occurs after a sleep-
ing machine’s manager becomes unavailable and before
a new manager picks it up. We described a strategy
in §5.2 that eliminates this time via an explicit hand-off
message. Analyzing the load properties of this strategy
is our main theoretical pursuit.
Choosing better guardians. Instead of choosing ran-
dom guardians, it would be more efficient to choose ma-
chines that are going to be awake anyway. Thus, we are
devising a way to predict when a machine is likely to
stay awake and use this information to choose guardians.
Since the views of different participants may be stale or
divergent, a more complicated protocol is required for
allowing a machine to stop being a guardian.
Other applications of GreenUp. Although we have
focused on the enterprise desktop setting, the techniques
used in GreenUp also apply to certain server cluster set-
tings. In particular, we have used GreenUp to build an
energy-efficient version of Windows Network Load Bal-
ancing (NLB), a distributed software load balancer used
by web sites like microsoft.com. NLB runs all ma-
chines of a cluster all the time; we used GreenUp to adapt
the NLB cluster size to the current load. Specifically, we
added a load manager module to GreenUp, using ~300
lines of C# code, to put a machine to sleep or wake an-
other machine if the load is too low or too high, respec-
tively. The load manager interacts with NLB via NLB’s
management interface—no changes are made to the NLB
code. We use a priority-based scheme similar to the one
for apocalypse prevention to ensure that only one ma-
chine goes to sleep or wakes up at at time. This ensures a
minimum number of awake machines, and prevents too
many from waking up during high load, to save energy.

We tested our prototype on a four-machine NLB clus-
ter with an IIS web server serving static files. A client
program requests a 1MB file with increasing frequency
in blocks of 100 seconds for 400 seconds. We use the
number of active connections as a measure of load and

set the low and high load thresholds to 30 and 100,
respectively. Figure 9 shows that our simple scheme
achieves dynamic energy efficiency. Initially, there is no
load so only machine 3 is awake. At 75 sec, it starts han-
dling requests but quickly detects a steep load slope and
wakes up machine 2. The two machines handle the load
until 395 sec, when both cross the high threshold and
hence wake up machines 1 and 4. The load is quickly re-
distributed until 475 sec, when the experiment stops and
all but one machine soon sleep.

9 Related work
We briefly describe recent work and contrast it with

ours. This work falls in two categories: handling sleep-
ing machines, and coordination in distributed systems.

9.1 Sleep and wakeup
We have already described the work most closely re-

lated to ours [19, 23]. A somewhat different approach is
taken by LiteGreen [8], which requires each user’s desk-
top environment to be in a VM. This VM is live-migrated
to a central server when the desktop is idle, and brought
back to the user’s desktop when the user returns. The
main drawback of this system is the need to deploy VM
technology on all desktops, which can be quite disrup-
tive. In contrast, our system is easier to deploy and re-
quires no central server.

The SleepServer system [3] uses application stubs to
run specially-modified applications on a sleep server
while the host machine sleeps. While this allows ap-
plications such as BitTorrent to keep sessions alive, it
requires modifying code and developing stubs for each
application. This is a significant barrier to deployment.

Apple offers a sleep proxy for home users, but it
works only with Apple hardware. Adaptiva [1] and
Verdiem [30] enable system administrators to wake ma-
chines up for management tasks, albeit not seamlessly.

We do not discuss data center power management, as
that environment is very different from the enterprise.

9.2 Coordination in distributed systems
One way to coordinate actions in a distributed system

is with a replicated state machine [25] that tolerates crash
failures [14] or Byzantine failures [6]. These protocols
are appropriate when strong consistency of distributed
state is required and the set of machines is relatively sta-
ble. This is because during conditions such as network
partitions, they pause operation until a quorum can be at-
tained. Even systems like Zeno [28] that are designed
for higher availability require weak quorums to make
progress. In our system, availability is the highest pri-
ority, and we can tolerate temporary state inconsistency.
The set of awake machines is also highly dynamic. Thus,
these approaches are inappropriate.

Other techniques for coordination include distributed
hash tables [22, 24, 29, 34] and gossip [9, 10]. These
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solve the problem of disseminating information among
a changing set of machines while also providing high
availability. However, they are designed for wide-area
networks where no efficient broadcast medium is avail-
able. Thus, we propose subnet state coordination as a
new alternative when the system runs within a subnet.

Like GreenUp, there are other distributed systems that
use randomization to spread load. For example, in RAM-
Cloud [20], masters randomly select backup servers to
store their replicas. Also, each RAMCloud server peri-
odically pings one other server at random, reporting any
failures to the cluster coordinator. Our distributed prob-
ing technique shows how to tune the number of probes to
guarantee any desired probability of detecting a failure.

10 Conclusions
This paper presented the design of GreenUp, a decen-

tralized system for providing high availability to sleeping
machines. GreenUp operates in a unique setting where
broadcast is efficient, machines are highly unreliable,
and users must be satisfied with the system to use it. Our
design addressed these challenges using new techniques
for coordinating subnet state and managing asleep ma-
chines. Our analysis of the design showed that it achieves
desired availability and efficiency properties. We also
implemented GreenUp and deployed it on ~100 users’
machines, providing many useful lessons and demon-
strating GreenUp’s practicality and efficacy. Ultimately,
we were able to meet the stringent demands of IT de-
partments for a low-cost, low-administration, and highly-
reliable system for keeping sleeping machines available.
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