
Disaggregation and the Application
Sebastian Angel

University of Pennsylvania
Mihir Nanavati
Microsoft Research

Siddhartha Sen
Microsoft Research

Abstract
This paper examines disaggregated data center architectures
from the perspective of the applications that would run on
these data centers, and challenges the abstractions that have
been proposed to date. In particular, we argue that operating
systems for disaggregated data centers should not abstract
disaggregated hardware resources, such as memory, compute,
and storage away from applications, but should instead give
them information about, and control over, these resources. To
this end, we propose augmenting OSes for disaggregation so as
to benefit data transfer in data parallel frameworks and speed
up failure recovery in replicated, fault-tolerant applications, as
well as discussing some of the implementation challenges.

1 Introduction
Disaggregation splits existing monolithic servers into a num-
ber of consolidated single-resource pools that communicate
over a fast interconnect [5, 29, 31, 34, 46, 47, 62]. This model
decouples individual hardware resources, including tightly
bound ones such as processors and memory, and enables the
creation of “logical servers” with atypical hardware configura-
tions. Disaggregation has long been the norm for disk-based
storage [30] because it allows individual resources to scale,
evolve, and be managed independently of one another. In this
paper, we target the new trend of memory disaggregation.

Existing works on disaggregated data centers (DDCs)
have focused primarily on the operational benefits of
disaggregation—it allows resources to be packed more densely
and improves utilization by eliminating the bin-packing prob-
lem. As a result, these works strive to preserve existing ab-
stractions and interfaces and propose runtimes and OSes that
make the unique characteristics of DDCs transparent to appli-
cations [11, 62]. The implicit underlying assumption in these
works is that from the perspective of the OS, the distributed
nature of processors and memory is an inconvenient truth of
the underlying hardware, much like paging or interrupts, that
should be abstracted away from applications.

Our position is that disaggregation is not just a hardware
trend to be tolerated and abstracted away to support legacy
applications, but rather one that should be exposed to appli-
cations and exploited for their benefit. We draw inspiration
from decades-old distributed shared memory systems (which
closely resemble disaggregation) where early attempts at full
transparency quickly gave way to weaker consistency and
more restrictive programming models for performance rea-
sons [13, 32, 33, 42, 54, 58]. While the rationale for exter-
nalizing memory has changed, along with the hardware and
target applications, we believe that co-designing applications

and disaggregated OSes remains an attractive proposition.
Two properties of disaggregated hardware with potential to

benefit applications are the ability to reassign memory by dy-
namically reconfiguring the mapping between processors and
memory, and the failure independence of different hardware
components (i.e., the fact that processors may fail without
the associated memory failing or vice versa). Memory reas-
signment can be leveraged by applications performing bulk
data transfers across the network to achieve zero-copy oper-
ations by remapping memory from the source to the destina-
tion, or during processor failures to find orphaned memory a
new home. Failure independence also allows processors to be
useful despite memory failures by acting as fast and reliable
failure informers [3] and triggering recovery protocols.

We target data center applications that are logically cohe-
sive, but physically distributed across multiple co-operating
instances—examples of these include most microservice-
based applications, data parallel frameworks, serverless com-
puting, distributed data stores, and fault-tolerant locking and
metadata services—and propose extending existing OSes for
disaggregated systems, such as LegoOS [62], with primitives
for memory reassignment and failure notification. Below we
discuss the proposed primitive operations and the challenges
in implementing them, all of which are exacerbated by the fact
that the exact nature of disaggregation and the functionality of
each component is in flux (§2).

• Memory grant. This is a voluntary memory reassignment
called by a source application instance to yield its memory
pages and move them to a destination application instance.
This reassignment requires flexibility from the interconnect
or the OS, which must be able to handle modifying memory
mappings quickly and at fine granularities.

• Memory steal. This is an involuntary reassignment of mem-
ory from one application instance to another. While similar
to a memory grant from the perspective of the interconnect,
a key difference is that the source application instance may
not have any prior warning. Since volatile state can now
transcend an application instance, the programming model
needs to guarantee crash consistency to ensure that state is
semantically coherent at all times.

• Failure notification. An application instance can opt to re-
ceive notifications for memory failures or it can register
other instances to automatically be notified in such cases.
This requires making failure information visible to applica-
tions, as well as retaining group membership at the proces-
sor so other instances can be notified if the local instance
cannot handle or mask the memory failure.

1



other
racks

ToR SwitchRack MMU

Processors

Cache (SRAM)

Memory (DRAM / NVRAM)

Processors

Cache (SRAM)

Memory (DRAM / NVRAM)

FIGURE 1—Proposed architecture for a DDC. Racks consist of
blades housing compute elements (with some local memory) or mem-
ory elements (with locally-attached compute to mediate accesses)
connected via the Rack MMU. Compute elements within and across
racks communicate through a standard Top-of-Rack Ethernet switch.

Data parallel frameworks, such as MapReduce and Dryad,
can use these primitives to eliminate unnecessary data trans-
fer during shuffles or between nodes in the data flow graph,
while Chubby [9] and other applications based on Paxos [36]
can recover and reassign the committed state machine from
a failed replica. In addition, early detection of memory fail-
ures can trigger recovery mechanisms without waiting for
conservative end-to-end timeouts. While this paper focuses on
these two applications, we believe that the interfaces are broad
enough to benefit other applications. For example, scalable
data stores, such as Redis or memcached, could use memory
grants to delegate part of their key space to new instances sans
copying, while microservice-based applications can use grants
and steals to achieve performance comparable to monolithic
services and still retain some modularity.

This paper is largely speculative and leaves many open ques-
tions. Our hope is to foster a discussion around disaggregation,
not from the perspective of operators, but as an opportunity,
and a challenge, for systems designers.

2 DDC architecture and resource allocation
In the absence of existing disaggregated data centers, a number
of different architectures have been proposed [18, 31, 46, 47,
55, 62]. While these architectures differ in some of the details,
the general strokes are similar. We assume the architecture
given in Figure 1, which has three core components: indi-
vidual blades with compute elements and memory elements,
connected over a low-latency programmable resource inter-
connect. While we have chosen to explore these ideas in the
context of a single architecture for simplicity, we believe that
they are broadly applicable to other disaggregation models.

Compute and memory elements. The basic compute ele-
ments in our rack are commodity processors which retain the
existing memory hierarchy with private core and shared socket
caches. Memory elements, which are conventional DRAM or
NVRAM chips, are made available to the compute elements
across an interconnect using a low-power local processing
element such as a mobile processor or an ASIC. This local
processing element interacts with memory through a standard
Memory Management Unit (MMU) and interposes on com-
pute element requests to provide addressing, virtualization,

and access control; we discuss the trade-offs in offloading
more functionality for near data processing in Section 7. In
line with the majority of proposed architectures, we assume
that compute elements have a small amount of locally-attached
memory, which is used for the OS and as a small cache to im-
prove performance [21, 62].

Resource interconnect. The resource interconnect allows
processor and memory elements to communicate and can be
based on RDMA over InfiniBand or Ethernet, Omnipath [8],
Gen-Z [22], or a switched PCIe fabric [10, 19]. Our design
is agnostic to the physical layer, but we assume a degree of
programmability and on-the-fly reconfiguration within the in-
terconnect, which we call the Rack MMU (one can think of it
as analogous to an SDN controller and switches). The Rack
MMU allows compute and memory elements to be dynami-
cally connected and disconnected in arbitrary configurations.
Shoal [63] proposes and implements one such network fab-
ric; although the proposed architecture lacks a programmable
switch, it emulates its functionality through a Clos network of
switches and a coordination-free scheduling protocol.

Resource partitioning and allocation. We assume that the
unit for disaggregation is a single rack (i.e., compute and
memory elements reside in the same rack), with resources be-
ing partitioned into the desired compute abstractions, such as
virtual machines, containers, or processes, and presented to ap-
plications (we generically refer to these compute abstractions
as processes). The Rack MMU acts as a resource manager
for the rack and is responsible for resource partitioning and
assigning compute and memory elements to processes.

The Rack MMU has a similar policy for sharing hardware
resources as LegoOS [62]: processes may share the same mem-
ory element but not the same memory regions (i.e., there is no
shared memory). Similarly, compute elements can host multi-
ple processes, but all the threads of a process are restricted to a
single compute element. This simplifies caching, as otherwise
shared memory would require coherence across the entire rack.
Memory is allocated at a page-sized granularity based on the
architecture of the compute and memory elements. The Rack
MMU is responsible for placement decisions for processes
and picks compute and memory elements on the basis of some
bin-packing policy, while fine-grained sharing and isolation
across co-hosted processes are managed by the local OS.

Addressing and access control. Processes expect to see a
continguous private virtual address space, regardless of the
physical layout of the underlying memory. To preserve this
illusion, the Rack MMU stores a virtual-to-physical (V2P)
mapping for each process, which resembles a traditional page
table. Compute elements look up these mappings (and may
cache them locally) to route accesses to the correct memory
element. While we expect the V2P table to be relatively coarse-
grained to preserve Rack MMU memory, it needs to support
mapping individual pages for memory reassignment.

The Rack MMU is also responsible for configuring access

2



control to memory. When memory is allocated, the Rack
MMU ensures that the topology of the interconnect allows
for the existence of a path between the corresponding compute
and memory elements. It also configures the page tables at
the memory elements with the process identifier (effectively
the CR3), the virtual address, and the appropriate permissions,
enabling local enforcement at the memory elements.

Scaling out. Not all applications want to live within a single
rack: to span racks, traditional Ethernet-based networking is
available through a commodity top-of-rack (ToR) switch that
connects to the rest of the data center network. Distributed
applications comprising multiple processes have to choose the
appropriate deployment: intra-rack deployments enjoy lower
latencies, while cross-rack deployments have greater failure
independence. This decision is analogous to the one faced by
developers when selecting the appropriate placement group [4]
or availability set [52] in cloud deployments today.

3 Exposing disaggregation
In traditional architectures, the OS is responsible for man-
aging hardware resources, allocating them to processes, and
enforcing isolation of shared resources. In a disaggregated
environment, this is no longer true and resource allocation
is now within the bailiwick of the Rack MMU; the local OS
at compute elements continues to be responsible for manag-
ing the underlying hardware, providing local scheduling and
isolation, and presenting a standard programming interface
to applications. Additionally, the OS is responsible for trans-
parently synchronizing application state between local and
remote memory and, if any state is locally cached, managing
the contents and coherence of this cache [25, 62].

Prior OSes for DDCs [11, 62] have chosen to implement
a standard POSIX API and abstract away the disaggregated
nature of DDCs from applications. While this allows existing
unmodified applications to run on DDCs, we argue—based
on our case studies (§5 and §4)—that these applications could
achieve better performance if they had more visibility and
control. Accordingly, we advocate for the design and imple-
mentation of the following operations as OS interfaces.

3.1 Memory reassignment

Memory is reassigned at page granularity by moving it from
the V2P mapping of one process to another at the Rack MMU
and invalidating any cached V2P mappings at compute ele-
ments. Following this, the Rack MMU revokes access to those
pages by modifying the page table entries at the source mem-
ory element; the detached memory can then be attached to an
existing process similar to newly allocated memory. Memory
reassignment may be voluntary in the form of memory grants
or may occur involuntarily through memory stealing.

Grants are inspired by L4’s grant [45], except that they
occur in a distributed context; mechanistically, we envision
that the source initiates the transfer through a syscall similar to
vmsplice() with the SPLICE_F_GIFT flag in Linux, thereby

“gifting” the memory to the kernel and promising to never
access it again. After the reassignment at the Rack MMU
and memory elements is complete, the source’s OS notifies
the recipient’s OS of the changed page mappings via message
passing, which then notifies the destination process via signals.

While grants are the most natural flavor of memory reassign-
ment, they are not particularly useful in the case of compute
element failures. An alternative is for other processes to be
able to steal a crashed process’ memory. This is similar to
how servers in Frangipani [64] keep their logs remotely, and
can request the logs of servers that have crashed to resume
their operations. We propose to expose memory stealing via
a syscall that requires the id of the source process and a ca-
pability; memory allocated using brk or mmap can disallow
reallocation with the appropriate flags.

One questions that arises in both of these cases is who is
allowed to trigger memory reassignments and when is it ac-
ceptable to do so? While it is clear in the context of grants
that a process should have the authority to give away its own
memory, the policy around stealing memory is less obvious.
One possibility is to group trusted processes together and al-
low any group member to initiate reassignment; another is
to require that a group of processes reach consensus. In such
cases, a shared group secret (perhaps based on a threshold
secret sharing scheme [61]) may act as the capability to steal
memory. We do not enforce a specific policy around reassign-
ment and instead leave it up to the application to determine
what is appropriate: while this means that a buggy applica-
tion can mistakenly steal its own memory and crash, this is
not morally different from threads stomping on each other’s
memory in buggy shared memory applications. We envision
memory stealing as primarily an aid to recovery mechanisms
when a process has crashed (or is suspected of having crashed),
but there might also be cases where stealing memory from a
running process is actually profitable.

Maintaining pointer semantics. As reassigned memory
pages may contain data structures with internal references,
these pages must be attached to the same virtual address to
prevent dangling pointers. To avoid a situation in which the
receiving process has already used the provided virtual ad-
dresses (which would create ambiguity), we propose reserving
a fixed number of bits of the virtual address to act as an iden-
tifier for the process that allocated the memory pages. As
reassigned pages continue to use the same virtual address
space, the sender OS marks the virtual address as being “in
use” and prevents further allocations or mappings to it.

Crash consistency. Most applications are written with the
assumption that application state does not outlive a specific
instance and that computation resumes from a clean state
after crashes; consequently, they do not maintain their invari-
ants at every point in the middle of large operations and have
temporary windows of inconsistency. In contrast, memory
stealing allows memory to be forcibly acquired at any time or

3



recovered after a crash—as neither of these scenarios provide
the source an opportunity to gracefully make state consistent,
remote memory must always be kept crash consistent. Stor-
age systems have historically faced similar challenges and
crash consistency for non-volatile memory (NVRAM) is an
active area of research [14, 51, 60, 65–68]. Applications can
adopt any of these mechanisms, which rely on a combination
of techniques such as journaling, soft updates [20], shadow
copies [15], and undo logs [14] to remain crash consistent
when updating structures in remote memory. Additionally, to
verify data integrity after reassignment, applications can use
page checksums (or other techniques from persistent storage);
the calculation and verification of these checksums can be de-
ferred to memory elements to reduce performance overhead.

Programming models. Crash consistency is necessary, but
not sufficient to allow other instances to start operating on
objects in stolen or recovered memory: even if consistent, the
metadata required to locate the objects may not be available
as it is in processor registers, caches, or on the stack. Applica-
tions typically rely on the compiler to keep track of internal
objects, so when memory is reassigned to a new process, find-
ing the necessary objects from raw memory pages would be a
momentous task, akin to searching for a lost treasure.

One possibility is for applications to use an asynchronous,
event-based model [2] or a Function-as-a-Service one that
forces them to package all critical state into an object which
persists across invocations. Metadata for these objects (this
could be as minimal as the root of a tree) can be stored and
distributed in a file system like namespace [17] that acts as a
“map” to help locate critical state.

Another challenge is that application developers need to
explicitly reason about memory ownership and transfer. While
this is a significant departure from existing programming mod-
els, there is encouraging precedent: the Rust programming lan-
guage successfully introduced similar ownership with move
semantics into the language itself to guarantee memory safety.

3.2 Failure notification

Compute elements should be notified of memory failures either
asynchronously using liveness information from a reliable
interconnect or explicitly in response to accesses on unreliable
interconnects. In the latter case, compute elements can receive
messages from the controller of the memory element (when
specific elements have failed), or rely on timeouts (when the
entire memory element is unreachable). Error notifications
are propagated back to the application through OS signals
(SIGBUS); applications that want to manage faults can register
for these signals and trigger a failure-recovery protocol, while
legacy applications may safely ignore them.

As memory failures may result in the loss of application
state, it is unclear how an application should leverage fail-
ure notifications. One possibility is for the application to pre-
register a group of processes with the OS that will be informed
in case of failures (these processes essentially serve as “emer-

setting mean RTT (µs)
Cross-rack (Cloud) 45

Intra-rack (eRPC [28]) 2

Future intra-rack (Mellanox ConnectX-6 [1]) 1

FIGURE 2—Comparison of the intra and cross-rack latency between
VMs. Cross-rack numbers are the experimentally determined mean
round-trip time (RTT) between two VMs, guaranteed to be on dif-
ferent racks [4, 52], in a public cloud. As rack co-location is not
guaranteed, intra-rack numbers are from the referenced publications.

gency contacts”). This group is stored in a per-process for-
warding table within the OS; as the OS is local to the compute
element, memory failures do not affect the forwarding table.
This allows other processes to learn of the failure, making the
compute element a local failure informer [3, 41].

Failures of compute elements can be detected with a rack-
level monitor that periodically verifies the health of compute
elements using heartbeats and triggers the appropriate action
when failures are detected (e.g., notify emergency contacts
of the failure). While the monitor can also fail, it is an opti-
mization, and not a replacement, to failure detection based
on end-to-end timeouts. The monitor can set more aggressive
timeouts than the application (especially when the application
spans multiple racks) because the latency difference between
intra-rack and cross-rack is significant, as shown in Figure 2.

4 Case study: Paxos
Applications use Paxos [36] to tolerate failures by replicating
their state [35, 56, 59]: Paxos ensures that replicas transition
through the same sequence of states. If a replica fails, a client
can reissue its requests to other replicas. Failures lead to re-
configuration, in which failed replicas are removed and new
replicas are introduced to prevent failures from accumulating
over time [12, 37, 38]. Reconfiguration brings new replicas
up to date by fetching the latest state from other replicas or
persistent storage [12], and prevents replicas that have been
excluded from the current configuration (presumably because
they have failed) from participating if they come back.

Detecting failures. Paxos typically relies on heartbeats with
conservative timeouts to ascertain the state of processes. Re-
cent reliable failure detectors [39–41] can quickly initiate re-
covery mechanisms using local monitors and lethal force. In
cases where failures are suspected but cannot be confirmed,
these detectors kill the replicas—the intuition is that unneces-
sary failures are preferable to uncertainty.

4.1 Paxos reconfiguration in DDCs

The failure independence of DDCs enables new ways to detect
and recover from failures in fault-tolerant applications using
Paxos. We assume that replicas run in different racks within the
same data center—a reasonable assumption for applications
that want greater single-zone failure independence. Within this

4



deployment, we explore two scenarios: a compute element that
loses some or all of its memory elements, and a faulty compute
element with functional memory elements.

Dead compute with live memory. When a replica dies, one
could reassign its memory, assuming it is in a consistent state,
to another compute element and the system could continue
operating unimpeded. Such reassignment reincarnates the old
node, from the perspective of Paxos, allowing the consensus
group to return to full health faster (no need to fetch the state
from a checkpoint or other replicas).

Should the failure of the compute element be detected faster
than the end-to-end timeout of the Paxos group—a likely
scenario due to the difference between intra- and cross-rack
latencies—reincarnation can be transparent to the rest of the
system. In such cases, clients and other replicas only observe a
connection termination and will attempt to reconnect. Replicas
can register “standbys” with the rack monitor to be contacted
when the replica dies and which can take ownership of the
dead replica’s memory using memory stealing.

In response to the steal operation, the Rack MMU revokes
and reassigns access to the region of memory. Revocation
is needed because failures are not always fail-stop and the
system must prevent a temporarily unavailable compute ele-
ment from returning and corrupting state. The ToR switch can
redirect cross-rack traffic to the new compute element using
OpenFlow rules; further, it can also use these rules to fence
the old compute element off from the rest of the network [40].

Dead memory with live compute. When a compute element
writes to a remote memory element, it is possible for this
operation to fail if the memory element is down. Instead of
terminating the application right away, as we discuss in Sec-
tion 3.2, the OS propagates a signal up the stack or forwards
the signal to other replicas. This mechanism allows other repli-
cas to detect memory failures and initiate reconfigurations
more quickly than relying on end-to-end timeouts.

5 Case study: Data parallel computations
In-memory data parallel frameworks such as data flow and
graph processing systems [16, 24, 26, 48, 53, 69] express com-
putations as a series of nodes, where each node performs an
operation on its inputs. In these systems, it is often neces-
sary to move data between nodes so that the output of a node
may be used as the input to the next node. For example, in
MapReduce [16], the output of mappers is shuffled and sent
to reducers that operate on a chunk of related data. We believe
that executing these systems transparently on a DDC is unwise,
and argue that the operators described in Section 3 can cut
down on data movement and improve straggler mitigation.

Faster data movement. Deploying a data parallel framework
on a transparent DDC results in unnecessary data movement
between compute nodes; for example, a single transfer data be-
tween two application workers forces 3 network and memory
RTTs. First, the source fetches data from its remote mem-

ory over the memory interconnect, and then sends it over the
network to the destination, who then forwards it to remote
memory over the memory interconnect.

Data transfer is often a major bottleneck [50]: Timely
Dataflow [49] achieves up to 3× higher throughput when
provided with a faster network. Memory grants convert data
transfer into a single RTT over the memory interconnect and
a control message over the ToR. The source would grant
the memory pages storing the data that it plans to send to the
recipient; the Rack MMU would adjust the necessary page
permissions and then notify the source that the grant was suc-
cessful. The source would then notify the destination that the
data pages are ready to be mapped into its local address space.

Once a memory grant is initiated, the contents of mem-
ory should not be modified until completed. As discussed in
Section 3.1, this immutability is not enforced and it is the
application’s responsibility to ensure that all its threads have
completed before initiating the grant. As data parallel frame-
works already have explicit computation and communication
phases, we believe this is reasonable; further, any violations
are effectively data races and only affect the application itself,
but do not impact the broader operation of the system.

Dealing with stragglers. Straggler tasks are often caused by
factors local to a particular compute node such as an over-
loaded processor or insufficient cache capacity or network
bandwidth [70]. In such cases, the node can have its memory
forcibly reassigned to another node (or set of nodes) by having
the job orchestrator steal the appropriate memory pages. The
recipient node can resume and complete the half-completed
computation, rather than starting from scratch. In case of fail-
ures, as in Paxos (§4.1), the rack monitor can inform the job
orchestrator, allowing it to relaunch the task more quickly; if
only the compute elements have failed, the relaunched task
can resume computation from where it had stalled.

6 Conclusion

Disaggregation represents a fundamental change in how hard-
ware resources are built, provisioned, and presented to ap-
plications for consumption. Early research initiatives have
focused largely on building transparent solutions that ben-
efit operators and are application-neutral; for example, Le-
goOS [62] uses RAID-style [57] memory replication while
Carbonari and Beschastnikh propose replication and switch-
based failover [11] to preserve existing failure semantics for
applications. Carbonari and Beschastnikh also observe that
applications could benefit from information about failures but
do not go further; we build on that observation and look at
how applications that eschew transparency could use this in-
formation. More specifically, we borrow ideas from systems
for zero-copy IPC [6, 7, 43–45] and RPC [27, 28], distributed
shared memory [13, 32, 33, 42, 54, 58], and from reliable
failure informers [3, 39–41] for faster recovery.

5



7 Discussion

We believe disaggregation has merits (and plenty of chal-
lenges) and wish to discuss three key areas: firstly, whether the
assumptions for our model of disaggregation are reasonable.
Secondly, we would like to discuss the role of compute at
memory elements and whether there are opportunities to lever-
age near-data processing (NDP), or if relying on such compute
is tantamount to admitting the inadequacy of memory disag-
gregation. Finally, we would like to discuss feasibility and
implementation strategies for the Rack MMU.

Disaggregation model. We assume that the unit of disaggre-
gation will be the rack because it strikes the right balance
between increasing provider flexibility around bin-packing
resources and the cost and overhead of the (still hypothetical)
interconnect. Are there merits to more aggressively disaggre-
gating resources across multiple racks? Further, the interfaces
we propose require applications to actively participate in rea-
soning about disaggregation to benefit—legacy applications,
while supported, do not transparently benefit in any way. Is
this a reasonable burden for application developers to bear?

Offloading operations to memory. Just as storage systems
have moved back and forth between completely disaggregated,
disaggregated with offload, and hyperconverged solutions, dis-
aggregated memory systems will need to decide just how
powerful and programmable the compute at the memory ele-
ments should be. At one extreme, purely disaggregated sys-
tems may directly expose memory across the fabric without
support for compute—except perhaps very simple functions
via processing-in-memory [23]. At the other end, they might
be fronted by fully programmable processors running arbitrary
code which could adversely affect memory access latencies.
In practice, we believe that this is likely to take some form
of domain specific language on top of dedicated hardware, or
a declarative policy engine on top of a commodity OS and
hardware, but with soft realtime guarantees. We believe that
this is an interesting area of discussion.

Implementing the Rack MMU. The Rack MMU is assumed
to be able to route requests between any compute and memory
elements within the rack at very low latency, and to support
racks of high density. It is also assumed to have enough space
to store address mappings for each process, so that accesses
from compute elements are transparently routed to the correct
memory element; further, it supports dynamic reconfiguration
of routes and mappings without requiring any downtime. In
practice, neither of those are completely realistic today: for
context, while programmable switches such as the Barefoot
Tofino and Cavium XPliant do offer low-latency routing and
on-the-fly reconfiguration, they still are limited in their port
counts and memory, which restricts their scale. A single switch
is unlikely to accommodate the above constraints, so an SDN-
like architecture with a slow control plane and a fast data plane
could be the sweet spot.

References

[1] Connectx-6 single/dual-port adapter supporting 200Gb/s with
VPI. https://www.mellanox.com/page/products_dyn?
product_family=265&mtag=connectx_6_vpi_card.

[2] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative Task Management Without Manual
Stack Management. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2002.

[3] M. K. Aguilera and M. Walfish. No time for asynchrony. In
Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[4] Amazon. Placement Groups.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/placement-groups.html.

[5] K. Asanović. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), 2014.

[6] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight Remote Procedure Call. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
1989.

[7] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. User-level Interprocess Communication for Shared
Memory Multiprocessors. ACM Transactions on Computer
Systems (TOCS), 9(2), 1991.

[8] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz,
T. Lovett, T. Rimmer, K. D. Underwood, and R. C. Zak. Intel
Omni-path Architecture: Enabling Scalable, High Performance
Fabrics. In Proceedings of the 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects (HOTI), 2015.

[9] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2006.

[10] BusinessWire. Liqid Fulfils the Promise of Rack-Scale
Composable Infrastructure with General Availability.
https://www.businesswire.com/news/home/
20171114006064/en/Liqid-Fulfils-Promise-Rack-
Scale-Composable-Infrastructure-General, 2017.

[11] A. Carbonari and I. Beschastnikh. Tolerating Faults in
Disaggregated Datacenters. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2017.

[12] T. Chandra, R. Griesemer, and J. Redstone. Paxos Made
Live—An Engineering Perspective. In Proceedings of the
Symposium on Principles of Distributed Computing (PODC),
2007.

[13] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and Protection in a Single-address-space Operating
System. ACM Transactions on Computer Systems (TOCS),
12(4), 1994.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: Making Persistent
Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O Through

6

https://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
https://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://www.businesswire.com/news/home/20171114006064/en/Liqid-Fulfils-Promise-Rack-Scale-Composable-Infrastructure-General
https://www.businesswire.com/news/home/20171114006064/en/Liqid-Fulfils-Promise-Rack-Scale-Composable-Infrastructure-General
https://www.businesswire.com/news/home/20171114006064/en/Liqid-Fulfils-Promise-Rack-Scale-Composable-Infrastructure-General


Byte-addressable, Persistent Memory. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2009.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2004.

[17] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System Software for
Persistent Memory. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2014.

[18] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic.
Beyond processor-centric operating systems. In Proceedings of
the Workshop on Hot Topics in Operating Systems (HotOS),
2015.

[19] S. Foskett. Liqid Takes Composable Infrastructure to a New
Level. https:
//gestaltit.com/exclusive/stephen/liqid-takes-
composable-infrastructure-to-a-new-level/, 2018.

[20] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt.
Soft Updates: A Solution to the Metadata Update Problem in
File Systems. ACM Transactions on Computer Systems
(TOCS), 18(2), 2000.

[21] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
Requirements for Resource Disaggregation. In Proceedings of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[22] Gen-z core specification, revision 1.0.
https://www.genzconsortium.com.

[23] S. Ghose, A. Borumand, J. S. Kim, J. Gómez-Luna, and
O. Mutlu. Processing-in-memory: A workload-drive
perspective. IBM Journal of Research & Development, 63(6),
2018.

[24] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on
natural graphs. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2012.

[25] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient Memory Disaggregation with INFINISWAP. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrel, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), 2007.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-sided
(RDMA) Datagram RPCs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter RPCs
can be General and Fast. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2019.

[29] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas,
D. Theodoropoulos, I. Koutsopoulos, K. Hasharoni, D. Raho,
C. Pinto, F. Espina, S. López-Buedo, Q. Chen, M. Nemirovsky,
D. Roca, H. Klos, and T. Berends. Rack-scale Disaggregated

Cloud Data Centers: The dReDBox Project Vision. In
Proceedings of the Design, Automation Test in Europe
Conference Exhibition (DATE), 2016.

[30] R. H. Katz. High Performance Network and Channel-Based
Storage. Technical Report UCB/CSD-91-650, EECS
Department, University of California, Berkeley, Sep 1991.

[31] K. Keeton. The Machine: An Architecture for Memory-centric
Computing. In Proceedings of the Workshop on Runtime and
Operating Systems for Supercomputers (ROSS), 2015.

[32] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the
USENIX Winter Technical Conference, WTEC’94, 1994.

[33] L. Kontothanassis, R. Stets, G. Hunt, U. Rencuzogullari,
G. Altekar, S. Dwarkadas, and M. L. Scott. Shared Memory
Computing on Clusters with Symmetric Multiprocessors and
System Area Networks. ACM Transactions on Computer
Systems (TOCS), 23(3), 2005.

[34] J. Kyathsandra and E. Dahlen. Intel Rack Scale Architecture
Overview.
http://presentations.interop.com/events/las-
vegas/2013/free-sessions---keynote-
presentations/download/463, 2013.

[35] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7), 1978.

[36] L. Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems (TOCS), 16(2), 1998.

[37] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos and
Primary-Backup Replication. In Proceedings of the Symposium
on Principles of Distributed Computing (PODC), 2009.

[38] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. ACM SIGACT News, 41(1), 2010.

[39] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish.
Improving Availability in Distributed Systems with Failure
Informers. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013.

[40] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish.
Taming uncertainty in distributed systems with help from the
network. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), 2015.

[41] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems with the
FALCON spy network. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2011.

[42] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. ACM Transactions on Computer Systems
(TOCS), 7(4), 1989.

[43] J. Liedtke. Improving IPC by Kernel Design. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 1993.

[44] J. Liedtke. On Micro-kernel Construction. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP),
1995.

[45] J. Liedtke. Toward Real Microkernels. Communications of the
ACM, 39(9), 1996.

[46] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt,
and T. F. Wenisch. Disaggregated Memory for Expansion and
Sharing in Blade Servers. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2009.

7

https://gestaltit.com/exclusive/stephen/liqid-takes-composable-infrastructure-to-a-new-level/
https://gestaltit.com/exclusive/stephen/liqid-takes-composable-infrastructure-to-a-new-level/
https://gestaltit.com/exclusive/stephen/liqid-takes-composable-infrastructure-to-a-new-level/
https://www.genzconsortium.com
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-presentations/download/463
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-presentations/download/463
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-presentations/download/463


[47] K. Lim, Y. Turnet, J. Chang, J. Renato Santos, and
P. Ranganathan. Disaggregated Memory Benefits for Server
Consolidation. Technical Report HPL-2011-31, HP
Laboratories, 2011.

[48] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of the ACM
SIGMOD Conference, 2010.

[49] F. McSherry. Timely dataflow. https:
//github.com/TimelyDataflow/timely-dataflow.

[50] F. McSherry and M. Schwarzkopf. The impact of fast networks
on graph analytics, part 1. http:
//www.frankmcsherry.org/pagerank/distributed/
performance/2015/07/08/pagerank.html, 2015.

[51] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou,
R. Alagappan, K. Strauss, and S. Swanson. Atomic In-place
Updates for Non-volatile Main Memories with Kamino-Tx. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2017.

[52] Microsoft. Regions and availability for virtual machines in
Azure.
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/regions-and-availability.

[53] D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A Timely Dataflow System. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[54] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin. Latency-Tolerant Software Distributed Shared
Memory. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2015.

[55] S. Novaković, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot.
Scale-out NUMA. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[56] B. M. Oki and B. H. Liskov. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems. In Proceedings of the Symposium on Principles of
Distributed Computing (PODC), 1988.

[57] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the ACM SIGMOD Conference, 1988.

[58] Power, Russell and Li, Jinyang. Piccolo: Building Fast,
Distributed Programs with Partitioned Tables. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[59] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys

(CSUR), 22(4), 1990.
[60] Se Kwon Lee and Jayashree Mohan and Sanidhya Kashyap

and Taesoo Kim and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-Memory
Indexes. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[61] A. Shamir. How to share a secret. Communications of the
ACM, 22(11), 1979.

[62] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A
Disseminated, Distributed OS for Hardware Resource
Disaggregation. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[63] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee,
H. Wang, R. Agarwal, and H. Weatherspoon. Shoal: A
Network Architecture for Disaggregated Racks. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2019.

[64] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable
distributed file system. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 1997.

[65] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and Durable Data Structures for
Non-volatile Byte-addressable Memory. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST),
2011.

[66] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2011.

[67] M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile, Main
Memory Storage System. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1994.

[68] J. Xu and S. Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), 2016.

[69] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2012.

[70] P. Zheng and B. C. Lee. Hound: Causal Learning for
Datacenter-scale Straggler Diagnosis. In Proceedings of the
ACM SIGMETRICS Conference, 2018.

8

https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/regions-and-availability
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/regions-and-availability

	1 Introduction
	2 DDC architecture and resource allocation
	3 Exposing disaggregation
	3.1 Memory reassignment
	3.2 Failure notification

	4 Case study: Paxos
	4.1 Paxos reconfiguration in DDCs

	5 Case study: Data parallel computations
	6 Conclusion
	7 Discussion

