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ABSTRACT
We present commensal cuckoo,∗ a secure group partition-
ing scheme for large-scale systems that maintains the cor-
rectness of many small groups, despite a Byzantine adver-
sary that controls a constant (global) fraction of all nodes.
In particular, the adversary is allowed to repeatedly rejoin
faulty nodes to the system in an arbitrary adaptive man-
ner, e.g., to collocate them in the same group. Commensal
cuckoo addresses serious practical limitations of the state-of-
the-art scheme, the cuckoo rule of Awerbuch and Scheideler,
tolerating 32x–41x more faulty nodes with groups as small
as 64 nodes (as compared to the hundreds required by the
cuckoo rule). Secure group partitioning is a key component
of highly-scalable, reliable systems such as Byzantine fault-
tolerant distributed hash tables (DHTs).

1. INTRODUCTION
Many modern computing services are provided by build-

ing networked systems out of large sets of machines. Sys-
tem designers employ this cooperation in order to achieve
the scalability and reliability requirements demanded by to-
day’s users. However, providing fault-tolerance is a chal-
lenge when working with such large sets of participating
software and hardware systems, including those hosted by
third-party cloud providers. In the case of open peer-to-peer
systems like the Vuze DHT [42] (a million-node BitTorrent
tracker), any machine connected to the Internet can partic-
ipate; clearly, such machines cannot be trusted.

To cope with the possibility of arbitrary (or so-called Byz-
antine) failures—whether due to malice, bugs, or simply
misconfigurations—the academic community has proposed
schemes such as Byzantine Fault Tolerant (BFT) replicated
state machines [6, 38], in which system state and function-
ality are replicated and executed across multiple machines.
These protocols ensure the correctness (“safety”) and avail-

∗Com·men·sal·ism. A symbiotic relationship in which one
organism derives benefit while causing little or no harm to
the other.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ability (“liveness”) of the system when fewer than 1/3 of the
nodes are faulty. Unfortunately, despite considerable effort,
state-of-the-art BFT protocols [6, 22] still scale poorly with
system size, because they require each node to participate
in every request, more than 2/3 of the nodes to maintain
the replicated state [45], and quadratic communication per
request. Thus, the application of these protocols has been
limited to “point solutions” on small sets of nodes within
larger systems, e.g., as a lock service [9].

To build BFT systems at a large scale, we must parti-
tion the system into smaller groups that operate on disjoint
(or at least minimally-overlapping) partitions of the system
state and functions. Client requests are then routed to the
appropriate group. The challenge is to ensure that every
group maintains less than a fixed local fraction of faulty
nodes (e.g., 1/3), given some fixed (smaller) global fraction
of faulty nodes that are controlled by a Byzantine adver-
sary. A group fails when its fraction of faulty nodes exceeds
the local threshold. The system fails if even a single group
fails, since such a group may behave arbitrarily: for exam-
ple, it may delete its portion of the system state and try to
corrupt other groups. We assume that the adversary can co-
ordinate the faulty nodes in an arbitrary, adaptive manner.
In particular, it may initiate a join-leave attack [11, 12, 41],
wherein it repeatedly rejoins certain faulty nodes to the sys-
tem using fresh identities [12] with the goal of compromis-
ing one or more groups. Such attacks pose a significant
threat [11, 12, 41] and have been launched successfully on
real DHT systems [44]. We call this the secure group parti-
tioning problem.

Prior work. Several systems [10, 21, 23, 31, 34, 43] and
some proposals [33, 35] have used multiple BFT groups for
scalability, but these solutions rely on a central configura-
tion service to manage system-wide membership, or they
maintain this information at every node. Other systems of-
fer better decentralization [1,7,17,18,26–28,40], e.g., using a
group for each directory of a file system [1], but they assume
that faulty nodes are distributed randomly or even perfectly
across groups. Thus, to our knowledge, all systems are vul-
nerable to join-leave attacks. For example, Rodrigues and
Liskov [32, 34] build a DHT by mapping nodes and data
to a virtual [0, 1) space using consistent hashing [19], and
form BFT groups out of contiguous sets of four nodes, each
group tolerating one fault. Even without a join-leave attack,
such a perfect distribution of faults cannot be achieved even
if faults occur uniformly randomly: a standard balls-in-bins
argument shows that some group will have ω(1) faulty nodes
with high probability.



Some theoretical constructions of fault-tolerant DHTs as-
sume that nodes fail randomly (independent of their lo-
cation) [15, 29], but these assumptions break down in the
presence of adaptive join-leave attacks. Recent years have
seen constructions that can provably withstand join-leave
attacks [2–4, 13, 37]. Of these, the most promising scheme
for DHTs that does not keep the system in a hyperactive
state—e.g., by forcing nodes to rejoin the system period-
ically [2]—is the scheme of Awerbuch and Scheideler [3].
They propose a simple, event-based scheme called the cuckoo
rule: when a node wishes to join the system, place it at a
random location x ∈ [0, 1) and move, or cuckoo, all nodes
in a constant-sized interval surrounding x to new random
locations in (0, 1]. Using this rule, they prove that groups
of size O(logn) remain correct for any polynomial number
of rounds in n, where n is the number of correct nodes in
the system. However, as we will show, the constants in their
scheme are prohibitively large, so either groups must be very
large (hundreds of nodes) or the global fraction of faults
must be trivially low for the system to survive a reasonable
number of rounds.

Our contributions. In this paper, we propose a scheme
called commensal cuckoo that significantly improves the per-
formance of the (parasitic) cuckoo rule. We demonstrate
that the cuckoo rule fails largely due to “bad luck”: bad
events that occur with non-negligible probability, like con-
secutive malicious joins to the same group. Thus, our ap-
proach is to partially derandomize the cuckoo rule, which
we do in two ways. First, we ensure that the number of
nodes cuckood during a join deterministically matches the
expected amount. Second, we allow groups to vet the join
process, that is, reject join attempts if they have not received
sufficiently many new nodes since the last join. Join vetting
has surprisingly deeper benefits: it naturally addresses a
known [3, 5] vulnerability in the cuckoo rule and suggests
the possibility of allowing faulty nodes to choose their join
location. Using commensal cuckoo, we are able to maintain
smaller groups of 64 nodes (as opposed to hundreds), while
tolerating a global fraction of faulty nodes between 32x–41x
larger than that of the cuckoo rule.

Paper organization. We define the secure group par-
titioning problem in §2 and examine the cuckoo rule in §3,
using simulations to understand why it fails. We introduce
our improved scheme, the commensal cuckoo rule, in §4.
Commensal cuckoo is just one (critical) piece of a larger set
of mechanisms needed to solve the secure group partitioning
problem. We review these complementary problems in §5,
as well as our proposed solutions. We conclude in §6.

2. PROBLEM ABSTRACTION
Let N = n + εn be the size of the system, such that n

nodes are correct and εn nodes are faulty. The global frac-
tion of faulty nodes is thus ε/(1 +ε). Initially, the n correct
nodes are mapped to random locations in [0, 1]. Next, the
adversary joins the εn faulty nodes one by one. Finally, the
adversary begins executing rejoin operations (a leave fol-
lowed by a join) on whichever faulty nodes it wants, even
basing its decision on the entire system state. A round con-
sists of a single rejoin operation. Our goal is to devise an
efficient join rule such that, with high probability (i.e., at
least 1 − 1/n) and for any polynomial number of rounds,
the system can be partitioned into intervals I ∈ [0, 1) that
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Figure 1: (Cuckoo rule) Minimum group size (in
powers of 2) needed to tolerate different ε for
100,000 rounds, where ε/(1 + ε) is the global frac-
tion of faulty nodes. Groups must be large (i.e.,
100s to 1000s of nodes) to guarantee correctness.
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Figure 2: (Cuckoo rule) Number of rounds the sys-
tem maintained correctness with an average group
size of 64 nodes, for varied global fractions of faulty
nodes. Simulation was halted after 100,000 rounds.
The global faulty fraction is trivially low and system
longevity drops sharply, for all N .

satisfy the following conditions [3]:

• Balance condition: I contains Θ(|I| · n) nodes.

• Correctness condition: I has less than 1/3 faulty nodes.

The nodes in such an interval comprise a group. In line with
our discussion above, we assume that groups are disjoint to
maximize parallelism, and each group runs a BFT protocol
to perform tasks such as generate pseudorandom numbers
and agree on membership changes. In principle, the constant
1/3 can be replaced with any constant less than or equal to
1/2, a flexibility we exploit later.

Our discussion below abstracts away several lower-level
mechanisms required to implement a secure group partition-
ing algorithm, such as a mechanism for constructing and
routing verifiable messages between groups. Since the algo-
rithms we present can be understood without these mecha-
nisms, we postpone their discussion to §5.

3. CUCKOO RULE
Awerbuch and Scheideler [3] propose the following simple

join rule. For a fixed k > 0, define a k-region to be a region
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Figure 3: Evolution of a group that fails for the cuckoo rule (left) vs. commensal cuckoo rule (right). Failure
occurs when the group’s faulty fraction exceeds 1/3, shown as a horizontal line. Primary joins (the black
crosses) are often to blame for the group’s ultimate failure, but their effect is more gradual for the commensal
cuckoo rule, which does not fail until round 3158. For both rules, the maximum faulty fraction per group is
much higher than the average, and the initial maximum fraction group was not the final one that failed.

in [0, 1) of size k/n that starts at an integer multiple of k/n.
For technical (divisibility) reasons, k-regions are rounded
from above to the closest value 1/2r where r is an integer.

Cuckoo rule. When a new node wants to join the system,
place it at a random x ∈ [0, 1) and move (cuckoo) all nodes
in the unique k-region containing x to random locations in
[0, 1).

We call the new node’s join a primary join and the sub-
sequent joins of the cuckood nodes secondary joins. Awer-
buch and Scheideler prove that in steady state, provided
ε < 1/2 − 1/k, all regions of size O(logn)/n have O(logn)
nodes (i.e., they are balanced) of which less than 1/3 are
faulty (i.e., they are correct), with high probability, for any
polynomial number of rounds. Thus these intervals are the
groups. Their analysis further implies that the best adver-
sarial strategy is to target a single group and repeatedly
rejoin faulty nodes that lie outside the group.

In practice, the random location of the primary join is gen-
erated by the group initially contacted by the new node, and
the random locations of the secondary joins are generated
by the group that owns the primary join location (where the
new node ultimately joins).

Cuckoo rule analysis. We first observe that the op-
timal strategy of the adversary is actually different from
that claimed in [3]—namely, target a single group, and have
nodes not in that group rejoin—once constant factors are
taken into account. At the beginning of each round, the ad-
versary should sort all groups by increasing fraction of faulty
nodes, and should have a faulty node belonging to the group
with the lowest fraction attempt to rejoin the system. This
Markovian strategy always maintains the largest and most
promising number of targeted groups.

Using this modified adversarial strategy, we simulated the
cuckoo rule to investigate the different constant factors in-
volved. These factors arise from the use of Chernoff bounds
in the analysis, as well as union bounds over all groups and
all rounds for which the balance and correctness conditions
must hold. In our experiments, we scaled k to reflect the
total number of nodes N instead of n, so that the expected
number of total nodes cuckood from a k-region is k. For
simplicity, we refer to this scaled quantity as k itself.

Figure 1 shows the minimum (average) group size required
for the system to remain correct for 100,000 rounds in three
consecutive trials, optimizing over k, for different values of
N and ε (recall that ε/(1+ε) is the global fraction of faulty
nodes). We increased the group size in powers of 2 to avoid
divisibility issues. As the figure shows, this size is in the
hundreds of nodes for any reasonable global faulty fraction.
Even when ε/(1 +ε) = 0.01, the minimum group size is 256
for N ≥ 2048. This situation is degenerate, actually, because
the total number of faulty nodes in the system is itself less
than 1/3 of the average group size. This means that even
if all faulty nodes were collocated in the same group, the
group would still be correct (in expectation), unless it was
much smaller than the average group size. The fact that the
system still fails suggests that the cuckoo rule causes groups
to become highly imbalanced. In fact, the optimal value of
k in these cases was always less than 2, indicating that the
system preferred to cuckoo very few nodes.

To determine what it would take to support groups of size
64—perhaps a performance upper-bound for any replicated
system—we ran the simulation with this constraint and op-
timized over ε and k. Figure 2 shows the results, where
each simulation is an average of three trials running for a
maximum of 100,000 rounds, at which point the system was
deemed non-faulty. For N ≥ 1024, ε/(1 + ε) < 0.015 to
achieve a non-faulty result, dropping to 0.002 when N =
8192. Note that some degradation in this threshold is to be
expected as N increases, because the fixed average group
size becomes smaller relative to the global number of faulty
nodes εn. However, all of the thresholds (for different N)
still fall into the degenerate realm described above. They
are also sharp, as the number of rounds to failure drops dra-
matically when ε is increased (note the log scale). Our goal
is to increase these thresholds.

In order to achieve this increase, we gain a deeper under-
standing of what goes wrong by examining the evolution of
a group that eventually fails. Figure 3 (left) plots the frac-
tion of faulty nodes in such a group over time, for a system
with N = 8192, ε = 0.05, k = 4, and an average group size
of 64 as before. We immediately see two problems. First,
each primary join (indicated by a black cross) causes the
faulty fraction of the group to jump. Although the fraction
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Figure 4: Number of cuckood nodes during joins for the cuckoo rule (left) vs. commensal cuckoo rule (right).
The expected value is 4. The cuckoo rule yields higher variance in the number of evicted nodes, likely due
to increasing non-uniformity of nodes across the keyspace, as k-regions are evicted en masse.
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Figure 5: Number of secondary joins between suc-
cessive joins for the cuckoo rule (CR) vs. commensal
cuckoo rule (CCR). Commensal cuckoo leads to re-
sults more tightly concentrated around the expected
value of 4, shown as a vertical line.

reduces slightly due to churn in the system caused by joins
in other groups, it does not fully recover to its original level.
Second, some primary joins occur very close together—the
probability of such bad events is non-negligible, and can be
easily calculated. These joins have the worst impact. In
contrast, during the period from round 507 to 858, there are
relatively few primary joins, giving the group enough time
to reduce its faulty fraction.

To investigate the first problem, Figure 4 (left) shows the
number of nodes cuckood in each round. Although this
number starts out concentrated around its expected value
of k = 4, it spreads out over time, ranging from 0 to as high
as 18. This indicates that k-regions are getting increasingly
“clumpy”, likely due to the fact that primary joins empty
out an entire k-region. To investigate the second problem,
Figure 5 plots a CDF of the number of secondary joins in
between successive primary joins to the failed group. This
number is also expected to be k = 4, since an interval of size
i is joined every 1/i rounds in expectation, during which
time k/i other nodes are expected to be cuckood, of which
(i/1)(k/i) = k are expected to land in the interval. However,
the actual number shows enough variance to be problematic,
with a considerable fraction at 0, and values as high as 16
for the failed group and 37 over all groups.

4. COMMENSAL CUCKOO RULE
The two problems discovered in §3 can be remedied in two

natural ways. First, to make cuckoos more consistently sized
and evade the“clumpiness”problem, we cuckoo k nodes cho-
sen randomly from the group being joined, instead of all
nodes in the k-region surrounding the join location. How-
ever, using k for every cuckoo actually makes things worse,
because a group that is light (i.e., has less than the average
group size g), will continue to become lighter, eventually al-
lowing the adversary to compromise it. Thus, to ensure that
lighter groups cuckoo less and heavier groups cuckoo more,
we scale k by the group’s current size relative to g. Most
prior work (e.g., [2, 13]) calculates g based on an estimate
of n and a target group size c logn for some a priori fixed
c > 0. However, g can also be chosen at the onset of the
system (as in most of our experiments), not as a function
of n, to reflect the scalability of the higher-level application
running in each group. Such an approach is practical if g is
large enough for the maximum n ever expected to be seen.

Second, to address the problem of inconsistently spaced
primary joins, we allow a group to vet join attempts by
refusing them if it has not received a sufficient number of
secondary joins since the last primary join. This allows the
group to replenish the nodes it lost during the last cuckoo.
Together, these techniques derandomize crucial aspects of
the cuckoo rule, yielding our new rule:

Commensal cuckoo rule. When a new node wants to join
the system, pick a random x ∈ [0, 1). If the group containing
x has not received at least k − 1 secondary joins since its
last primary join, start over with a new random x ∈ [0, 1).
Otherwise, place the node at x and move (cuckoo) kg′/g
random nodes in the group to random locations in [0, 1),
where g′ is the group’s current size and g is the average
group size.

Interestingly, these two modifications are synergistic. By
ensuring the expected (weighted) number of nodes are cuck-
ood during each primary join, commensal cuckooing ensures
a sufficient number of secondary joins, which allows a group
to wait for enough of them before accepting another pri-
mary join. At the same time, by vetting repeated joins at-
tempts, the adversary is forced to join distinct groups, which
roughly speaking ensures that all groups are joined, result-
ing in

∑
kg′/g = (k/g)

∑
g′ = Nk/g total secondary joins.



Thus, if groups wait for slightly less than k secondary joins
between primary joins, a joining node need only try O(1)
times before finding a group that accepts it. Cuckooing a
weighted number of nodes but waiting for a fixed number of
secondary joins has another benefit: it pushes the group’s
size towards the average size g.

We omit a detailed analysis of the commensal cuckoo rule
due to space constraints.

4.1 Comparative evaluation
Figures 4 (right) and 5 show the number of cuckood nodes

and the number of secondary joins between successive pri-
mary joins, respectively, using the commensal cuckoo rule.
Compared to the results of the cuckoo rule, these numbers
are tightly concentrated around their expected values of 4.
The combined effect is seen in Figure 3 (right), where the
group that ultimately fails does so in a more gradual and
consistent manner than with the cuckoo rule. More impor-
tantly, commensal cuckoo is able to benefit from larger val-
ues of k: using k = 6 instead of 4 in Figure 3 results in no
group failures for over 100,000 rounds.

Table 1 shows the largest value of ε/(1 + ε) achieved by
each scheme, optimizing over k, that allows a system with an
average group size of 64 to remain correct for at least 100,000
rounds in three consecutive trials. Commensal cuckoo tol-
erates a global faulty fraction over 32x larger than that of
the cuckoo rule while maintaining less than 1/3 faulty nodes
in each group. Since commensal cuckoo also improves with
increasing k, we enforced an upper bound of k = 12; this
was sufficient to scale performance with increasing N . The
cuckoo rule does not improve by increasing k when the av-
erage group size is small, as we discussed in §3. In gen-
eral, commensal cuckoo evicts more nodes per join than the
cuckoo rule, but this eviction is needed to redistribute faulty
nodes in the system.

Interestingly, commensal cuckoo’s technique of join vet-
ting has deeper benefits than those outlined above. As pre-
sented, the cuckoo rule in §3 has a known vulnerability [3,5]:
when joining a faulty node, the adversary may repeatedly
cause the random number generation for the primary join
location to fail—causing no cuckoos to occur—until it re-
ceives a join location of its liking. Awerbuch and Scheideler
address this problem [5] by spawning artificial cuckoos when-
ever a join attempt fails. Join vetting, on the other hand,
naturally evades this vulnerability, because regardless of the
adversary’s behavior, a group will not accept a primary join
unless sufficient secondary joins have occurred.

The very property that saved us above, however, opens the
door to a new type of liveness attack: if too few secondary
joins occur in every group, the system might deadlock be-
cause it might be the case that no group accepts a join. The
adversary can implement such an attack, for example, by
having faulty nodes ignore secondary join operations (and
leave the system instead). However, we can protect against
this attack in much the same way Awerbuch and Scheideler
protected against failed join attempts above. Namely, the
group that issues a secondary join of a node can inform the
group containing the secondary join location, so the latter
group can increment its count of secondary joins even if the
node does not arrive within a given time frame. (We assume
correct nodes arrive within this time frame.) If the node at-
tempts to join the group after this point, it will have to do
so as a primary join. Section §5 discusses techniques for

<1/3 faulty per group <1/2 faulty per group

N CR CCR Gain CR CCR Gain

512 0.0284 0.0739 2.60x 0.0534 0.1854 3.47x

1024 0.0144 0.0757 5.25x 0.0293 0.1759 6.00x

2048 0.0080 0.0695 8.70x 0.0144 0.1803 12.5x

4096 0.0036 0.0693 19.0x 0.0080 0.1647 20.6x

8192 0.0020 0.0651 32.4x 0.0040 0.1660 41.4x

Table 1: Maximum ε/(1 + ε) of the cuckoo rule
(CR) vs. commensal cuckoo rule (CCR), in order
for groups of average size 64 to remain correct for
at least 100,000 rounds.

dealing with groups that become too light, e.g., as a result
of these “no-shows”.

The power of join vetting suggests the following poten-
tial modification to the commensal cuckoo rule: allow faulty
nodes to attempt a primary join at any location, not just a
random one. We conjecture that commensal cuckoo with
this modification remains secure.

4.2 Higher fault thresholds
Table 1 also lists the largest ε/(1 + ε) achieved when less

than 1/2 of the nodes in a group are allowed to be faulty.
These results are significantly better: commensal cuckoo tol-
erates a global faulty fraction over 41x larger than that of the
cuckoo rule. An upper bound of k = 8 was sufficient to scale
this performance with increasing N . While several tech-
niques exist for improving the resiliency of BFT protocols
to 1/2, they either require broadcast channels (e.g., [16,30])
or trusted primitives (e.g., [8, 25]), neither of which is prac-
tical for groups of nodes in an open peer-to-peer setting.
However, one technique—separating the thresholds of con-
sistency and availability [24]—allows a group to remain cor-
rect as long as fewer than 1/2 of its nodes are faulty, even
though it may become unavailable before that. The draw-
back of this approach is that a correct group may become
unresponsive, but we can mitigate this occurrence by lever-
aging the other groups in the system, e.g., as backups or as
sources of replacement nodes.

5. TOWARDS A COMPLETE SOLUTION
Commensal cuckoo relies on several lower-level mecha-

nisms that we have assumed in previous sections. We briefly
discuss some of those mechanisms here.

Secure routing. In order to send messages between
the groups involved in a join operation, as well as to pro-
cess client requests that may arrive at any group, we need
a mechanism for routing messages. The cuckoo rule [3]
uses a routing scheme based on de Bruijn graphs that re-
quires O(logn) hops and O(log3 n) total messages. Recent
work [36, 46] reduces the latter overhead to O(logn) mes-
sages in expectation. One might even combine these ideas
with O(1)-hop DHT constructions [14] to reduce both the
number of hops and messages, at the cost of increased per-
group state.

Group authentication. A group must be able to ver-
ify a message it receives even if it has no knowledge of the
sending group’s membership. The cuckoo rule relies on all-



to-all connectivity between adjacent groups along a rout-
ing path to authenticate messages. However, cryptographic
techniques can significantly improve the performance and
flexibility of authentication in the DHT [46]. In particu-
lar, threshold signatures [39] and distributed key genera-
tion [20] can be used to assign a public/private key pair
to each group that remains constant despite changes in the
group’s membership. Specifically, the g group members use
a (t, g)-threshold signature scheme to cooperatively sign a
message with their private key shares, despite up to t faulty
nodes. When the group’s membership changes, a new set
of key shares corresponding to the same public/private key
pair is generated and distributed. The new shares reveal no
additional information to faulty nodes than their old shares,
even in combination.

Bootstrapping and heavy churn. Our analysis of the
cuckoo and commensal cuckoo rules assumes the system is
in steady state. However, protocols to bootstrap the system
and handle heavy churn are also needed. Prior fault-tolerant
DHTs describe such protocols [2, 13], but they use groups
that overlap and are based on the current (estimated) value
of n. Thus, all groups necessarily change if n changes by a
sufficiently large amount. Our scheme supports an alterna-
tive approach that chooses a target group size g at the onset
of the system, based on the scalability of the intra-group
protocol, as discussed in §4. This enables a bootstrapping
protocol that creates an initial group spanning the entire
[0, 1) interval and uses split and merge operations to divide
a region or merge two regions, respectively, if they get too
heavy or too light. Such a protocol is simpler when n is
small, and it localizes the effect of increasing n. For the
bootstrapping protocol to work, we must assume that the
number of faulty nodes is at most εn for all values of n.

Other attacks. Our fault model currently allows the
adversary to control the behavior of only faulty nodes. A
different type of attack is one of denial-of-service (DoS), in
which the adversary forces a correct node to leave the sys-
tem, e.g., by overwhelming it with spurious traffic. Awer-
buch and Scheideler propose an extension [4] to the cuckoo
rule that withstands such an attack; commensal cuckoo is
compatible with this extension, and we believe some of the
ideas presented in this paper can be applied to the extended
rule as well.

The adversary may also launch a DoS attack on the data
layer of the DHT, for example by crafting a series of insert
or lookup requests that target a particular region or node.
Awerbuch and Scheideler handle such attacks by proactively
replicating data items across groups [3]. A reactive approach
may also be practical and more efficient. This is because,
unlike with join-leave attacks, it is possible to detect when
a data-layer attack occurs by measuring the current request
load. The system could use this information to adaptively
replicate data items on-the-fly.

6. CONCLUSIONS
Commensal cuckoo is a practical scheme for partitioning

a large-scale system into many small groups that remain
correct despite adversarial join-leave attacks. By carefully
managing when it is acceptable for new nodes to join groups,
as well as balancing which existing nodes are evicted by such
joins, commensal cuckoo can support significantly smaller
group sizes and a higher fraction of faulty nodes than the

state-of-the-art, the cuckoo rule. Commensal cuckoo relies
on several important mechanisms to solve the secure group
partitioning problem. In our future work, we plan to design
protocols for these mechanisms along the lines of §5.
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